Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Naturwissenschaften ; 105(7-8): 42, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29931450

RESUMEN

The annual cycle of migrating birds is shaped by their seasonal movements between breeding and non-breeding sites. Studying how migratory populations are linked throughout the annual cycle-migratory connectivity, is crucial to understanding the population dynamics of migrating bird species. This requires the consideration not only of spatial scales as has been the main focus to date but also of temporal scales: only when both aspects are taken into account, the degree of migratory connectivity can be properly defined. We investigated the migration behaviour of hoopoes (Upupa epops) from four breeding populations across Europe and characterised migration routes to and from the breeding grounds, location of non-breeding sites and the timing of key migration events. Migration behaviour was found to vary both within and amongst populations, and even though the spatial migratory connectivity amongst the populations was weak, temporal connectivity was strong with differences in timing amongst populations, but consistent timing within populations. The combination of diverse migration routes within populations and co-occurrence on the non-breeding grounds between populations might promote exchange between breeding populations. As a result, it might make hoopoes and other migrating bird species with similar strategies more resilient to future habitat or climatic changes and stabilise population trends.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Animales , Europa (Continente) , Dinámica Poblacional
2.
Evolution ; 74(10): 2377-2391, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32885859

RESUMEN

Spectacular long-distance migration has evolved repeatedly in animals enabling exploration of resources separated in time and space. In birds, these patterns are largely driven by seasonality, cost of migration, and asymmetries in competition leading most often to leapfrog migration, where northern breeding populations winter furthest to the south. Here, we show that the highly aerial common swift Apus apus, spending the nonbreeding period on the wing, instead exhibits a rarely found chain migration pattern, where the most southern breeding populations in Europe migrate to wintering areas furthest to the south in Africa, whereas the northern populations winter to the north. The swifts concentrated in three major areas in sub-Saharan Africa during the nonbreeding period, with substantial overlap of nearby breeding populations. We found that the southern breeding swifts were larger, raised more young, and arrived to the wintering areas with higher seasonal variation in greenness (Normalized Difference Vegetation Index) earlier than the northern breeding swifts. This unusual chain migration pattern in common swifts is largely driven by differential annual timing and we suggest it evolves by prior occupancy and dominance by size in the breeding quarters and by prior occupancy combined with diffuse competition in the winter.


Asunto(s)
Migración Animal , Evolución Biológica , Aves/genética , África , Animales , Tamaño Corporal , Tamaño de la Nidada , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA