RESUMEN
Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.
Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Miel , Abejas , Argentina , Animales , Miel/análisis , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Ceras/análisis , Ceras/química , Éteres Difenilos Halogenados/análisis , Plaguicidas/análisis , Estaciones del Año , Cloropirifos/análisisRESUMEN
Small lizards can accommodate to constraints imposed by temporal changes in ambient temperature through a combination of adaptive evolution and behavioral and physiological plasticity. Thermal physiology plasticity may compensate for climate variation and favor performance while minimizing behavioral costs in sub-optimal conditions. The Tandilia's lizard, Liolaemus tandiliensis, occurs in an isolated mountain range of the Argentinean temperate Pampas. In this study, we compared the thermal biology of L. tandiliensis between late spring (December) and mid-summer (February). The habitats' thermal quality was lower in late spring than in mid-summer. The lizard's field-body temperature (Tb) was 2-3⯰C higher than the operative temperature (Te). Overall, the mean preferred temperature (Tsel) was 37.4⯰C [preferred range (Tset): 36.2-38.7⯰C], and was similar to other Liolaemus species. The Tset and Tsel of females in late spring were 1.8⯰C lower than in mid-summer. In the case of males, the Tsel did not vary among seasons, while the Tset had a difference of 2.5⯰C between seasons. Adults were moderate thermoregulators, but females were more efficient only in late spring (Emales = 0.69; Efemales = 0.58), compared to mid-summer (Emales = 0.68; Efemales = 0.50). Juveniles did not show temporal differences in temperature preferences and had a relatively higher efficiency in late spring (E = 0.38) compared to mid-summer (E = 0.28). An increased proportion of juveniles and adults shifted their Tb near to the Tset in late spring respect to mid-summer. The adults also matched their preferred temperatures to their current body temperature. These results suggest that seasonal shifts in the thermoregulatory parameters of L. tandiliensis may improve their thermoregulatory efficiency. Although temporal variation in ambient temperatures might influence the thermal biology of the studied lizards, other factors such as changes in the reproductive status may have also interfered.
Asunto(s)
Aclimatación , Regulación de la Temperatura Corporal , Lagartos/fisiología , Animales , Femenino , Masculino , Estaciones del Año , TemperaturaRESUMEN
Pollinators such as Apidae bees are vital for ecosystems and food security. Unfortunately, their populations have declined due to several factors including pesticide use. Among them, the organophosphate insecticide chlorpyrifos, poses a global threat, while legacy compounds like organochlorine pesticides (OCPs) easily bioaccumulate, increasing the concern. Bombus pauloensis, a widely distributed native bee in Argentina, is used for commercial pollination; however, information regarding their health status is scarce. This study assessed chlorpyrifos and OCP levels in B. pauloensis (workers and males) and related environmental matrices living from three different land uses schemes, by means of GC-ECD and GC-MS. The ornamental horticulture field (OP) showed the highest total pesticide concentrations in workers (13.1 ng/g), flowers and soils, whereas the organic agriculture field (OA) exhibited the lowest. Chlorpyrifos was the most abundant compound, accounting for at least 20 % of pesticide load across all matrices. The food production horticulture field (FH) had the highest chlorpyrifos concentration in workers, males and soils (5.0, 4.4 and 3.3 ng/g, respectively), suggesting a local greater usage, whereas OA showed the lowest. Regarding OCPs groups, Drins and DDTs were predominant in most matrices, with FH males registering the highest levels (4.0 and 2.5 ng/g, respectively), closely followed by OP. However, metabolites' contribution indicated historical use and atmospheric inputs in all sites. Multivariate analyses confirmed the significance of site and bumblebee sex to explain pesticide composition. Males from all sites exhibited higher chlorpyrifos levels than workers and this trend was similar for some OCP groups. Overall, OA differed from FH and OP, indicating a correlation between production modes and pesticide profiles. This study demonstrates the value of B. pauloensis as a pesticide biomonitor but also offers insights into its populations' health in the area. In this sense, this information could be useful towards the preservation of this crucial pollinator.