Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 43: 441-464, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32283996

RESUMEN

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.


Asunto(s)
Macrodatos , Encéfalo/fisiología , Biología Computacional , Red Nerviosa/fisiología , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Expresión Génica/fisiología , Humanos
2.
Nat Methods ; 20(7): 1025-1028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264147

RESUMEN

Characterizing multifaceted individual differences in brain function using neuroimaging is central to biomarker discovery in neuroscience. We provide an integrative toolbox, Reliability eXplorer (ReX), to facilitate the examination of individual variation and reliability as well as the effective direction for optimization of measuring individual differences in biomarker discovery. We also illustrate gradient flows, a two-dimensional field map-based approach to identifying and representing the most effective direction for optimization when measuring individual differences, which is implemented in ReX.


Asunto(s)
Individualidad , Neuroimagen , Reproducibilidad de los Resultados , Biomarcadores
3.
Stat Med ; 42(24): 4418-4439, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37553084

RESUMEN

We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site. Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also have heterogeneous populations and treatment assignment mechanisms. Motivated by these considerations, we develop federated methods to draw inferences on the average treatment effects of combined data across sites. Our methods first compute summary statistics locally using propensity scores and then aggregate these statistics across sites to obtain point and variance estimators of average treatment effects. We show that these estimators are consistent and asymptotically normal. To achieve these asymptotic properties, we find that the aggregation schemes need to account for the heterogeneity in treatment assignments and in outcomes across sites. We demonstrate the validity of our federated methods through a comparative study of two large medical claims databases.


Asunto(s)
Puntaje de Propensión , Humanos , Causalidad , Bases de Datos Factuales , Interpretación Estadística de Datos
4.
PLoS Comput Biol ; 17(9): e1009279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529652

RESUMEN

Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations-such as measurement error-as compared to systematic deviations-such as individual differences-are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability, which quantifies the degree to which an individual's samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error.


Asunto(s)
Conectoma , Genoma , Artefactos , Mapeo Encefálico/métodos , Conjuntos de Datos como Asunto , Humanos , Reproducibilidad de los Resultados
5.
Proc Natl Acad Sci U S A ; 116(13): 5995-6000, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850525

RESUMEN

Clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering-clustering the vertices of a graph based on their spectral embedding-is commonly approached via K-means (or, more generally, Gaussian mixture model) clustering composed with either Laplacian spectral embedding (LSE) or adjacency spectral embedding (ASE). Recent theoretical results provide deeper understanding of the problem and solutions and lead us to a "two-truths" LSE vs. ASE spectral graph clustering phenomenon convincingly illustrated here via a diffusion MRI connectome dataset: The different embedding methods yield different clustering results, with LSE capturing left hemisphere/right hemisphere affinity structure and ASE capturing gray matter/white matter core-periphery structure.

6.
Neuroimage ; 226: 117549, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248255

RESUMEN

Compelling evidence suggests the need for more data per individual to reliably map the functional organization of the human connectome. As the notion that 'more data is better' emerges as a golden rule for functional connectomics, researchers find themselves grappling with the challenges of how to obtain the desired amounts of data per participant in a practical manner, particularly for retrospective data aggregation. Increasingly, the aggregation of data across all fMRI scans available for an individual is being viewed as a solution, regardless of scan condition (e.g., rest, task, movie). A number of open questions exist regarding the aggregation process and the impact of different decisions on the reliability of resultant aggregate data. We leveraged the availability of highly sampled test-retest datasets to systematically examine the impact of data aggregation strategies on the reliability of cortical functional connectomics. Specifically, we compared functional connectivity estimates derived after concatenating from: 1) multiple scans under the same state, 2) multiple scans under different states (i.e. hybrid or general functional connectivity), and 3) subsets of one long scan. We also varied connectivity processing (i.e. global signal regression, ICA-FIX, and task regression) and estimation procedures. When the total number of time points is equal, and the scan state held constant, concatenating multiple shorter scans had a clear advantage over a single long scan. However, this was not necessarily true when concatenating across different fMRI states (i.e. task conditions), where the reliability from the aggregate data varied across states. Concatenating fewer numbers of states that are more reliable tends to yield higher reliability. Our findings provide an overview of multiple dependencies of data concatenation that should be considered to optimize reliability in analysis of functional connectivity data.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adulto , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
7.
Neuroimage ; 222: 117274, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818613

RESUMEN

Genome-wide association studies have demonstrated significant links between human brain structure and common DNA variants. Similar studies with rodents have been challenging because of smaller brain volumes. Using high field MRI (9.4 T) and compressed sensing, we have achieved microscopic resolution and sufficiently high throughput for rodent population studies. We generated whole brain structural MRI and diffusion connectomes for four diverse isogenic lines of mice (C57BL/6J, DBA/2J, CAST/EiJ, and BTBR) at spatial resolution 20,000 times higher than human connectomes. We measured narrow sense heritability (h2) I.e. the fraction of variance explained by strains in a simple ANOVA model for volumes and scalar diffusion metrics, and estimates of residual technical error for 166 regions in each hemisphere and connectivity between the regions. Volumes of discrete brain regions had the highest mean heritability (0.71 ± 0.23 SD, n = 332), followed by fractional anisotropy (0.54 ± 0.26), radial diffusivity (0.34 ± 0.022), and axial diffusivity (0.28 ± 0.19). Connection profiles were statistically different in 280 of 322 nodes across all four strains. Nearly 150 of the connection profiles were statistically different between the C57BL/6J, DBA/2J, and CAST/EiJ lines. Microscopic whole brain MRI/DTI has allowed us to identify significant heritable phenotypes in brain volume, scalar DTI metrics, and quantitative connectomes.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen de Difusión Tensora , Animales , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética/métodos , Ratones
8.
Neuroimage ; 223: 117346, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32916286

RESUMEN

Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética , Animales , Humanos , Macaca mulatta , Vías Nerviosas/fisiología , Especificidad de la Especie
9.
Neuroimage ; 222: 117232, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771618

RESUMEN

A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.


Asunto(s)
Encéfalo/fisiología , Conectoma , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adulto , Algoritmos , Conectoma/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Individualidad , Imagen por Resonancia Magnética/métodos , Masculino
10.
Proc Natl Acad Sci U S A ; 114(51): 13519-13524, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203663

RESUMEN

We here describe a selected reaction monitoring (SRM)-based approach for the discovery and validation of peptide biomarkers for cancer. The first stage of this approach is the direct identification of candidate peptides through comparison of proteolytic peptides derived from the plasma of cancer patients or healthy individuals. Several hundred candidate peptides were identified through this method, providing challenges for choosing and validating the small number of peptides that might prove diagnostically useful. To accomplish this validation, we used 2D chromatography coupled with SRM of candidate peptides. We applied this approach, called sequential analysis of fractionated eluates by SRM (SAFE-SRM), to plasma from cancer patients and discovered two peptides encoded by the peptidyl-prolyl cis-trans isomerase A (PPIA) gene whose abundance was increased in the plasma of ovarian cancer patients. At optimal thresholds, elevated levels of at least one of these two peptides was detected in 43 (68.3%) of 63 women with ovarian cancer but in none of 50 healthy controls. In addition to providing a potential biomarker for ovarian cancer, this approach is generally applicable to the discovery of peptides characteristic of various disease states.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Técnicas de Diagnóstico Molecular/métodos , Neoplasias Ováricas/sangre , Neoplasias Pancreáticas/sangre , Péptidos/sangre , Proteómica/métodos , Estudios de Casos y Controles , Ciclofilina A/sangre , Femenino , Humanos , Técnicas de Diagnóstico Molecular/normas , Proteómica/normas , Sensibilidad y Especificidad
12.
PLoS Comput Biol ; 13(4): e1005493, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28414801

RESUMEN

Deeper exploration of the brain's vast synaptic networks will require new tools for high-throughput structural and molecular profiling of the diverse populations of synapses that compose those networks. Fluorescence microscopy (FM) and electron microscopy (EM) offer complementary advantages and disadvantages for single-synapse analysis. FM combines exquisite molecular discrimination capacities with high speed and low cost, but rigorous discrimination between synaptic and non-synaptic fluorescence signals is challenging. In contrast, EM remains the gold standard for reliable identification of a synapse, but offers only limited molecular discrimination and is slow and costly. To develop and test single-synapse image analysis methods, we have used datasets from conjugate array tomography (cAT), which provides voxel-conjugate FM and EM (annotated) images of the same individual synapses. We report a novel unsupervised probabilistic method for detection of synapses from multiplex FM (muxFM) image data, and evaluate this method both by comparison to EM gold standard annotated data and by examining its capacity to reproduce known important features of cortical synapse distributions. The proposed probabilistic model-based synapse detector accepts molecular-morphological synapse models as user queries, and delivers a volumetric map of the probability that each voxel represents part of a synapse. Taking human annotation of cAT EM data as ground truth, we show that our algorithm detects synapses from muxFM data alone as successfully as human annotators seeing only the muxFM data, and accurately reproduces known architectural features of cortical synapse distributions. This approach opens the door to data-driven discovery of new synapse types and their density. We suggest that our probabilistic synapse detector will also be useful for analysis of standard confocal and super-resolution FM images, where EM cross-validation is not practical.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Sinapsis/fisiología , Algoritmos , Animales , Corteza Cerebral/diagnóstico por imagen , Biología Computacional , Humanos , Microscopía Electrónica , Modelos Estadísticos , Tomografía
13.
Pattern Recognit Lett ; 86: 76-81, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29391659

RESUMEN

High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to cope with the high-dimensional nature of these data, due to both computational and statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ1 and ℓ2 penalties, and some numerical linear algebra tricks, yields an estimator that is computationally efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately estimate spatial filters, connectivity graphs, and time-courses from native resolution functional magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed using standard methods, readying the field for further generalizations including non-linear and non-Gaussian state-space models.

14.
Hum Brain Mapp ; 37(5): 1986-97, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27012314

RESUMEN

Much recent attention has been paid to quantifying anatomic and functional neuroimaging on the individual subject level. For optimal individual subject characterization, specific acquisition and analysis features need to be identified that maximize interindividual variability while concomitantly minimizing intra-subject variability. We delineate the effect of various acquisition parameters (length of acquisition, sampling frequency) and analysis methods (time course extraction, region of interest parcellation, and thresholding of connectivity-derived network graphs) on characterizing individual subject differentiation. We utilize a non-parametric statistical metric that quantifies the degree to which a parameter set allows this individual subject differentiation by both maximizing interindividual variance and minimizing intra-individual variance. We apply this metric to analysis of four publicly available test-retest resting-state fMRI (rs-fMRI) data sets. We find that for the question of maximizing individual differentiation, (i) for increasing sampling, there is a relative tradeoff between increased sampling frequency and increased acquisition time; (ii) for the sizes of the interrogated data sets, only 3-4 min of acquisition time was sufficient to maximally differentiate each subject with an algorithm that utilized no a priori information regarding subject identification; and (iii) brain regions that most contribute to this individual subject characterization lie in the default mode, attention, and executive control networks. These findings may guide optimal rs-fMRI experiment design and may elucidate the neural bases for subject-to-subject differences. Hum Brain Mapp 37:1986-1997, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Individualidad , Imagen por Resonancia Magnética , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Vías Nerviosas , Estadísticas no Paramétricas
15.
Nat Methods ; 10(6): 524-39, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23722212

RESUMEN

At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging­based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética/métodos , Encéfalo/citología , Encéfalo/fisiología , Humanos , Fenotipo
17.
Neuroinformatics ; 22(1): 63-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036915

RESUMEN

The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces under random diffeomorphisms. Our method is freely available in our open-source Python package brainlit.


Asunto(s)
Neuronas , Neurociencias , Axones , Encéfalo/fisiología , Cabeza
18.
Netw Neurosci ; 7(2): 522-538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409218

RESUMEN

Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes-in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm that allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises.

19.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37066291

RESUMEN

The heritability of human connectomes is crucial for understanding the influence of genetic and environmental factors on variability in connectomes, and their implications for behavior and disease. However, current methods for studying heritability assume an associational rather than a causal effect, or rely on strong distributional assumptions that may not be appropriate for complex, high-dimensional connectomes. To address these limitations, we propose two solutions: first, we formalize heritability as a problem in causal inference, and identify measured covariates to control for unmeasured confounding, allowing us to make causal claims. Second, we leverage statistical models that capture the underlying structure and dependence within connectomes, enabling us to define different notions of connectome heritability by removing common structures such as scaling of edge weights between connectomes. We then develop a non-parametric test to detect whether causal heritability exists after taking principled steps to adjust for these commonalities, and apply it to diffusion connectomes estimated from the Human Connectome Project. Our findings reveal that heritability can still be detected even after adjusting for potential confounding like neuroanatomy, age, and sex. However, once we address for rescaling between connectomes, our causal tests are no longer significant. These results suggest that previous conclusions on connectome heritability may be driven by rescaling factors. Together, our manuscript highlights the importance for future works to continue to develop data-driven heritability models which faithfully reflect potential confounders and network structure.

20.
ArXiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36994162

RESUMEN

The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces under random diffeomorphisms. Our method is freely available in our open-source Python package brainlit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA