RESUMEN
This work highlights the potential for the synthesis of new PtSnZn catalysts with enhanced efficiency and durability for methanol oxidation reaction (MOR) in low-temperature fuel cells. In this research, PtZn and PtSnZn nanoparticles deposited on high surface area Vulcan XC-72R Carbon support were created by a microwave-assisted polyol method. The electrochemical performances of synthesized catalysts were analyzed by cyclic voltammetry and by the electrooxidation of adsorbed CO and the chronoamperometric method. The physicochemical properties of obtained catalysts were characterized by transmission electron microscopy (TEM), thermogravimetric (TGA) analysis, energy dispersive spectroscopy (EDS) and by X-ray diffraction (XRD). The obtained findings showed the successful synthesis of platinum-based catalysts. It was established that PtSnZn/C and PtZn/C catalysts have high electrocatalytic performance in methanol oxidation reactions. Catalysts stability tests were obtained by chronoamperometry. Stability tests also confirmed decreased poisoning and indicated improved stability and better tolerance to CO-like intermediate species. According to activity and stability measurements, the PtSnZn/C catalyst possesses the best electrochemical properties for the methanol oxidation reaction. The observed great electrocatalytic activity in the methanol oxidation reaction of synthesized catalysts can be attributed to the beneficial effects of microwave synthesis and the well-balanced addition of alloying metals in PtSnZn/C catalysts.
RESUMEN
This is a preliminary study of the depth distribution of (137)Cs radionuclides in cultivated anthrosol soil of a 15-year old peach tree plantation at the experimental field "Radmilovac" near Belgrade. Before planting, the soil was ploughed at the depth of 1 m. The soil had not been annually ploughed, irrigated and treated with mineral fertilizers for three years before sampling. Activity concentration for (137)Cs ranged from 1.8 Bq kg(-1) to 35 Bq kg(-1). Along the soil depth it varied highly, reaching as high a total variation coefficient as 83 %. Radiocaesium distribution patterns depended on the extent of soil mixing in the plough layer, as it was mechanically transferred from the surface to the lower soil layers during cultivation. (137)Cs was associated with humus content and fixation to clay fractions in the soil. Our results single out soil's hygroscopic water as a valuable parameter for (137)Cs behaviour that could be used commonly if the measurement is standardised.