Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Cybern ; 115(2): 161-176, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33787967

RESUMEN

In studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogeneous illumination of their visual field. The purpose of this information remains unclear. Here, we propose a mechanism that detects feature homogeneity in visual areas, based on latency coding and spike time coincidence, in a purely feed-forward and therefore rapid manner. We demonstrate how homogeneity information can interact with information on contrast edges to potentially support rapid image segmentation. Furthermore, we analyze how neuronal crosstalk (noise) affects the mechanism's performance. We show that the detrimental effects of crosstalk can be partly mitigated through delayed feed-forward inhibition that shapes bi-phasic post-synaptic events. The delay of the feed-forward inhibition allows effectively controlling the size of the temporal integration window and, thereby, the coincidence threshold. The proposed model is based on single-spike latency codes in a purely feed-forward architecture that supports low-latency processing, making it an attractive scheme of computation in spiking neuronal networks where rapid responses and low spike counts are desired.


Asunto(s)
Neuronas , Potenciales de Acción , Animales , Estimulación Luminosa
2.
J Neurosci ; 37(44): 10624-10635, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993484

RESUMEN

Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee.SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.


Asunto(s)
Comunicación Animal , Corteza Auditiva/fisiología , Baile/fisiología , Interneuronas/fisiología , Vibración , Animales , Antenas de Artrópodos/fisiología , Corteza Auditiva/citología , Abejas , Femenino , Actividad Motora/fisiología
3.
BMC Bioinformatics ; 19(1): 143, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669537

RESUMEN

BACKGROUND: Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference. RESULTS: We outline here new algorithms - Reg-MaxS and Reg-MaxS-N - for co-registering pairs and groups of morphologies, respectively. Reg-MaxS applies a sequence of translation, rotation and scaling transformations, estimating at each step the transformation parameters that maximize spatial overlap between the volumes occupied by the morphologies. We test this algorithm with synthetic morphologies, showing that it can account for a wide range of transformation differences and is robust to noise. Reg-MaxS-N co-registers groups of more than two morphologies by iteratively calculating an average volume and registering all morphologies to this average using Reg-MaxS. We test Reg-MaxS-N using five groups of morphologies from the Droshophila melanogaster brain and identify the cases for which it outperforms existing algorithms and produce morphologies very similar to those obtained from registration to a standard brain atlas. CONCLUSIONS: We have described and tested algorithms for co-registering pairs and groups of neuron morphologies. We have demonstrated their application to spatial comparison of stereotypic morphologies and calculation of dendritic density profiles, showing how our algorithms for registering neuron morphologies can enable new approaches in comparative morphological analyses and visualization.


Asunto(s)
Algoritmos , Drosophila melanogaster/citología , Neuronas/citología , Animales , Encéfalo/citología , Análisis de Componente Principal
4.
J Opt Soc Am A Opt Image Sci Vis ; 33(3): A255-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26974931

RESUMEN

A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.


Asunto(s)
Percepción de Color , Estimulación Luminosa , Adulto , Color , Femenino , Humanos , Masculino , Adulto Joven
5.
J Opt Soc Am A Opt Image Sci Vis ; 33(3): A267-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26974933

RESUMEN

A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.


Asunto(s)
Percepción de Color , Estimulación Luminosa , Adulto , Color , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
J Vis ; 15(13): 17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26401624

RESUMEN

The perceived color of a chromatic stimulus is influenced by the chromaticity of its surround. To investigate these influences along the dimension of hue, we measured hue changes induced in stimuli of different hues by isoluminant chromatic surrounds. Generally, induced hue changes were directed in color space away from the hue of the inducing surround and depended on the magnitude on the hue difference between stimulus and surround. With increasing difference in hue between stimulus and surround, induced hue changes increased up to a maximum and then decreased for larger differences. This qualitative pattern was similar for different inducers, but quantitatively, induction was weaker along some directions in cone-opponent color space than along other directions. The strongest induction effects were found along an oblique, blue-yellow axis that corresponds to the daylight axis. The overall pattern of the induction effect shows similarities to the well-known tilt effect, where shifts in perceived angle of oriented stimuli are induced by oriented surrounds. This suggests analogous neural representations and similar mechanisms of contextual processing for different visual features such as orientation and color.


Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
7.
J Vis ; 15(1): 15.1.13, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589297

RESUMEN

Brightness and color cues are essential for visually guided behavior. However, for rodents, little is known about how well they do use these cues. We used a virtual reality setup that offers a controlled environment for sensory testing to quantitatively investigate visually guided behavior for achromatic and chromatic stimuli in Mongolian gerbils (Meriones unguiculatus). In two-alternative forced choice tasks, animals had to select target stimuli based on relative intensity or color with respect to a contextual reference. Behavioral performance was characterized using psychometric analysis and probabilistic choice modeling. The analyses revealed that the gerbils learned to make decisions that required judging stimuli in relation to their visual context. Stimuli were successfully recognized down to Weber contrasts as low as 0.1. These results suggest that Mongolian gerbils have the perceptual capacity for brightness and color constancy.


Asunto(s)
Conducta Animal/fisiología , Visión de Colores/fisiología , Luz , Percepción Visual/fisiología , Animales , Conducta de Elección , Femenino , Gerbillinae , Psicometría , Interfaz Usuario-Computador
8.
Vision Res ; 220: 108406, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38626536

RESUMEN

Incorporating statistical characteristics of stimuli in perceptual processing can be highly beneficial for reliable estimation from noisy sensory measurements but may generate perceptual bias. According to Bayesian inference, perceptual biases arise from the integration of internal priors with noisy sensory inputs. In this study, we used a Bayesian observer model to derive biases and priors in hue perception based on discrimination data for hue ensembles with varying levels of chromatic noise. Our results showed that discrimination thresholds for isoluminant stimuli with hue defined by azimuth angle in cone-opponent color space exhibited a bimodal pattern, with lowest thresholds near a non-cardinal blue-yellow axis that aligns closely with the variation of natural daylights. Perceptual biases showed zero crossings around this axis, indicating repulsion away from yellow and attraction towards blue. These biases could be explained by the Bayesian observer model through a non-uniform prior with a preference for blue. Our findings suggest that visual processing takes advantage of knowledge of the distribution of colors in natural environments for hue perception.


Asunto(s)
Teorema de Bayes , Percepción de Color , Umbral Sensorial , Humanos , Percepción de Color/fisiología , Umbral Sensorial/fisiología , Estimulación Luminosa/métodos , Discriminación en Psicología/fisiología , Adulto , Femenino , Masculino , Adulto Joven
9.
Sci Rep ; 13(1): 18624, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903860

RESUMEN

How we perceive a visual stimulus can be influenced by its surrounding context. For example, the presence of a reference skews the perception of a similar feature in a stimulus, a phenomenon called reference repulsion. Ongoing research so far remains inconclusive regarding the stage of visual information processing where such repulsion occurs. We examined the influence of a reference on late visual processing. We measured the repulsion effect caused by an orientation reference presented after an orientation ensemble stimulus. The participants' reported orientations were significantly biased away from the post-stimulus reference, displaying typical characteristics of reference repulsion. Moreover, explicit discrimination choices between the reference and the stimulus influenced the magnitudes of repulsion effects, which can be explained by an encoding-decoding model that differentiates the re-weighting of sensory representations in implicit and explicit processes. These results support the notion that reference repulsion may arise at a late decision-related stage of visual processing, where different sensory decoding strategies are employed depending on the specific task.


Asunto(s)
Cognición , Percepción Visual , Humanos , Sesgo , Estimulación Luminosa
10.
Sci Data ; 10(1): 357, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277500

RESUMEN

Sharing of data, processing tools, and workflows require open data hosting services and management tools. Despite FAIR guidelines and the increasing demand from funding agencies and publishers, only a few animal studies share all experimental data and processing tools. We present a step-by-step protocol to perform version control and remote collaboration for large multimodal datasets. A data management plan was introduced to ensure data security in addition to a homogeneous file and folder structure. Changes to the data were automatically tracked using DataLad and all data was shared on the research data platform GIN. This simple and cost-effective workflow facilitates the adoption of FAIR data logistics and processing workflows by making the raw and processed data available and providing the technical infrastructure to independently reproduce the data processing steps. It enables the community to collect heterogeneously acquired and stored datasets not limited to a specific category of data and serves as a technical infrastructure blueprint with rich potential to improve data handling at other sites and extend to other research areas.


Asunto(s)
Experimentación Animal , Conjuntos de Datos como Asunto , Animales , Flujo de Trabajo
11.
eNeuro ; 10(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36750361

RESUMEN

Science is changing: the volume and complexity of data are increasing, the number of studies is growing and the goal of achieving reproducible results requires new solutions for scientific data management. In the field of neuroscience, the German National Research Data Infrastructure (NFDI-Neuro) initiative aims to develop sustainable solutions for research data management (RDM). To obtain an understanding of the present RDM situation in the neuroscience community, NFDI-Neuro conducted a comprehensive survey among the neuroscience community. Here, we report and analyze the results of the survey. We focused the survey and our analysis on current needs, challenges, and opinions about RDM. The German neuroscience community perceives barriers with respect to RDM and data sharing mainly linked to (1) lack of data and metadata standards, (2) lack of community adopted provenance tracking methods, (3) lack of secure and privacy preserving research infrastructure for sensitive data, (4) lack of RDM literacy, and (5) lack of resources (time, personnel, money) for proper RDM. However, an overwhelming majority of community members (91%) indicated that they would be willing to share their data with other researchers and are interested to increase their RDM skills. Taking advantage of this willingness and overcoming the existing barriers requires the systematic development of standards, tools, and infrastructure, the provision of training, education, and support, as well as additional resources for RDM to the research community and a constant dialogue with relevant stakeholders including policy makers to leverage of a culture change through adapted incentivization and regulation.


Asunto(s)
Investigación Biomédica , Neurociencias , Manejo de Datos , Encuestas y Cuestionarios , Difusión de la Información
12.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33506383

RESUMEN

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Asunto(s)
Neurociencias , Reproducibilidad de los Resultados
13.
Front Neurosci ; 15: 685590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354560

RESUMEN

Objective: We are still lacking a pathophysiological mechanism for functional disorders explaining the emergence and manifestation of characteristic, severely impairing bodily symptoms like chest pain or dizziness. A recent hypothesis based on the predictive coding theory of brain function suggests that in functional disorders, internal expectations do not match the actual sensory body states, leading to perceptual dysregulation and symptom perception. To test this hypothesis, we investigated the account of internal expectations and sensory input on gaze stabilization, a physiologically relevant parameter of gaze shifts, in functional dizziness. Methods: We assessed gaze stabilization in eight functional dizziness patients and 11 healthy controls during two distinct epochs of large gaze shifts: during a counter-rotation epoch (CR epoch), where the brain can use internal models, motor planning, and resulting internal expectations to achieve internally driven gaze stabilization; and during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no movement expectations are present, and gaze is stabilized by sensory input alone. Results: Gaze stabilization differed between functional patients and healthy controls only when internal movement expectations were involved [F(1,17) = 14.63, p = 0.001, and partial η2 = 0.463]: functional dizziness patients showed reduced gaze stabilization during the CR (p = 0.036) but not OSC epoch (p = 0.26). Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well-measurable deficits in internally-driven gaze stabilization in functional dizziness pointing at internal expectations that do not match actual body states. This experimental evidence supports the perceptual dysregulation hypothesis of functional disorders and is an important step toward understanding the underlying pathophysiology.

14.
J Vis ; 10(8): 19, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20884594

RESUMEN

The spatially uniform mislocalization of stimuli flashed around the onset of fast eye-movements (perisaccadic shift) has previously been explained by an inaccurate internal representation of current eye position. However, this hypothesis does not account for the observation that continuously presented stimuli are correctly localized during saccades. Here we show that the two findings are not mutually exclusive. The novelty of our approach lies in our interpretation of the extraretinal signal which, in contrast to other models, is not considered an (erroneous) estimate of current eye-position. Based on the reafference principle, our model assumes that the extraretinal signal is optimal in that it accurately predicts the neural representation of the retinal position of a continuously present stimulus. Perisaccadic shift arises as a consequence of maintaining stable perisaccadic position estimates for continuously present stimuli under the physiologically plausible assumption of temporal low-pass filtering in the afferent visual pathway. Consequently, our model reconciles the reafference principle with the finding of perisaccadic shift.


Asunto(s)
Fijación Ocular/fisiología , Retina/fisiología , Movimientos Sacádicos/fisiología , Percepción Espacial/fisiología , Humanos , Estimulación Luminosa
15.
Insects ; 10(10)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614450

RESUMEN

Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.

16.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31451603

RESUMEN

Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.


Asunto(s)
Adaptación Fisiológica/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Maduración Sexual/fisiología , Conducta Social , Vibración , Factores de Edad , Animales , Abejas , Femenino
17.
Front Neuroinform ; 13: 62, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611781

RESUMEN

An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format.

18.
Neuron ; 37(4): 681-91, 2003 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-12597864

RESUMEN

We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.


Asunto(s)
Percepción de Color/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Vigilia/fisiología , Animales , Femenino , Macaca mulatta , Neuronas/fisiología , Campos Visuales/fisiología
19.
J Vis ; 8(14): 9.1-9, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19146310

RESUMEN

In retinotopically organized areas of the macaque visual cortex, neurons have been found that shift their receptive fields before a saccade to their postsaccadic position. This saccadic remapping has been interpreted as a mechanism contributing to perceptual stability of space across eye movements. So far, there is only limited evidence for similar mechanisms that support perceptual stability of visual objects by remapping the representation of object features across saccades. In our present study, we investigated whether color stimuli presented before a saccade affected the perception of color stimuli at the same spatial position after the saccade. We found that the perceived hue of a postsaccadically flashed stimulus was systematically shifted toward the color of a presaccadically presented stimulus. This finding would be in accordance with a saccadic remapping process that preactivates, prior to a saccade, the neurons that represent a stimulus after the saccade at this very location. Such a remapping of visual object features could contribute to the stable perception of the visual world across saccades.


Asunto(s)
Visión de Colores/fisiología , Color , Estimulación Luminosa/métodos , Movimientos Sacádicos/fisiología , Adulto , Humanos , Masculino , Tiempo de Reacción
20.
J Vis ; 8(14): 27.1-13, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19146328

RESUMEN

A number of studies have investigated the localization of briefly flashed targets during saccades to understand how the brain perceptually compensates for changes in gaze direction. Typical version saccades, i.e., saccades between two points of the horopter, are not only associated with changes in gaze direction, but also with large transient changes of ocular vergence. These transient changes in vergence have to be compensated for just as changes in gaze direction. We investigated depth judgments of perisaccadically flashed stimuli relative to continuously present references and report several novel findings. First, disparity thresholds increased around saccade onset. Second, for horizontal saccades, depth judgments were prone to systematic errors: Stimuli flashed around saccade onset were perceived in a closer depth plane than persistently shown references with the same retinal disparity. Briefly before and after this period, flashed stimuli tended to be perceived in a farther depth plane. Third, depth judgments for upward and downward saccades differed substantially: For upward, but not for downward saccades we observed the same pattern of mislocalization as for horizontal saccades. Finally, unlike localization in the fronto-parallel plane, depth judgments did not critically depend on the presence of visual references. Current models fail to account for the observed pattern of mislocalization in depth.


Asunto(s)
Percepción de Profundidad/fisiología , Movimientos Sacádicos/fisiología , Percepción Visual/fisiología , Humanos , Juicio , Estimulación Luminosa/métodos , Psicofísica , Disparidad Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA