Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Dev Growth Differ ; 54(7): 702-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22957893

RESUMEN

POU-V class proteins like Oct4 are crucial for keeping cells in an undifferentiated state. An Oct4 homologue in Xenopus laevis, Oct25, peaks in expression during early gastrulation, when many cells are still uncommitted. Nevertheless, extensive morphogenesis is taking place in all germ layers at that time. Phenotypical analysis of embryos with Oct25 overexpression revealed morphogenesis defects, beginning during early gastrulation and resulting in spina-bifida-like axial defects. Analysis of marker genes and different morphogenesis assays show inhibitory effects on convergence and extension and on mesoderm internalization. On a cellular level, cell-cell adhesion is reduced. On a molecular level, Oct25 overexpression activates expression of PAPC, a functional inhibitor of the cell adhesion molecule EP/C-cadherin. Intriguingly, Oct25 effects on cell-cell adhesion can be restored by overexpression of EP/C-cadherin or by inhibition of the PAPC function. Thus, Oct25 affects morphogenesis via activation of PAPC expression and subsequent functional inhibition of EP/C-cadherin.


Asunto(s)
Cadherinas/biosíntesis , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/embriología , Morfogénesis/fisiología , Factores del Dominio POU/biosíntesis , Proteínas de Xenopus/biosíntesis , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular/fisiología , Mesodermo/citología , Factores del Dominio POU/genética , Protocadherinas , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
2.
J Biol Chem ; 285(11): 8408-21, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20064932

RESUMEN

Xenopus Oct25 is a POU family subclass V (POU-V) transcription factor with a distinct domain structure. To investigate the contribution of different domains to the function of Oct25, we have performed gain of function analyses. Deletions of the N- or C-terminal regions and of the Hox domain (except its nuclear localization signal) result in mutants being indistinguishable from the wild type protein in the suppression of genes promoting germ layer formation. Deletion of the complete POU domain generates a mutant that has no effect on embryogenesis. However, disruption of the alpha-helical structures in the POU domain, even by a single amino acid mutation, causes reversal of protein function. Overexpression of such mutants leads to dorsalization of embryos and formation of secondary axial structures. The underlying mechanism is an enhanced transcription of genes coding for antagonists of the ligands for ventralizing bone morphogenetic protein and Wnt pathways. Corresponding deletion mutants of Xenopus Oct60, Oct91, or mouse Oct4 also exhibit such a dominant-negative effect. Therefore, our results reveal that the integrity of the POU domain is crucial for the function of POU-V transcription factors in the regulation of genes that promote germ layer formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores del Dominio POU , Proteínas de Xenopus , Xenopus/genética , Activinas/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Eliminación de Gen , Humanos , Riñón/citología , Ratones , Mutagénesis/fisiología , Proteína Nodal/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/química , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Proteínas de Dominio T Box/metabolismo , Transcripción Genética/fisiología , Xenopus/embriología , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
3.
Mech Dev ; 124(9-10): 668-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17703924

RESUMEN

The formation of the vertebrate body axis during gastrulation strongly depends on a dorsal signaling centre, the Spemann organizer as it is called in amphibians. This organizer affects embryonic development by self-differentiation, regulation of morphogenesis and secretion of inducing signals. Whereas many molecular signals and mechanisms of the organizer have been clarified, its function in anterior-posterior pattern formation remains unclear. We dissected the organizer functions by generally blocking organizer formation and then restoring a single function. In experiments using a dominant inhibitory BMP receptor construct (tBr) we find evidence that neural activation by antagonism of the BMP pathway is the organizer function that enables the establishment of a detailed anterior-posterior pattern along the trunk. Conversely, the exclusive inhibition of neural activation by expressing a constitutive active BMP receptor (hAlk-6) in the ectoderm prohibits the establishment of an anterior-posterior pattern, even though the organizer itself is still intact. Thus, apart from the formerly described separation into a head and a trunk/tail organizer, the organizer does not deliver positional information for anterior-posterior patterning. Rather, by inducing neurectoderm, it makes ectodermal cells competent to receive patterning signals from the non-organizer mesoderm and thereby enable the formation of a complete and stable AP pattern along the trunk.


Asunto(s)
Abdomen/embriología , Tipificación del Cuerpo/fisiología , Organizadores Embrionarios/fisiología , Tórax/embriología , Abdomen/efectos de la radiación , Animales , Tipificación del Cuerpo/efectos de la radiación , Inducción Embrionaria/fisiología , Inducción Embrionaria/efectos de la radiación , Mesodermo/citología , Mesodermo/fisiología , Mesodermo/efectos de la radiación , Neuronas/citología , Neuronas/fisiología , Neuronas/efectos de la radiación , Organizadores Embrionarios/citología , Organizadores Embrionarios/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Tórax/efectos de la radiación , Rayos Ultravioleta , Xenopus laevis
4.
Dev Dyn ; 238(3): 755-65, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235717

RESUMEN

Hox genes are key players in defining positional information along the main body axis of vertebrate embryos. In Xenopus laevis, Hoxc6 was the first homeobox gene isolated. It encodes two isoforms. We analyzed in detail their spatial and temporal expression pattern during early development. One major expression domain of both isoforms is the spinal cord portion of the neural tube. Within the spinal cord and its populations of primary neurons, Hox genes have been found to play a crucial role for defining positional information. Here we report that a loss-of-function of either one of the Hoxc6 products does not affect neural induction, the expression of general neural markers is not modified. However, Hoxc6 does widely affect the formation of primary neurons within the developing neural tissue. Manipulations of Hoxc6 expression severly changes the expression of the neuronal markers N-tubulin and Islet-1. Formation of primary neurons and formation of cranial nerves are affected. Hence, Hoxc6 functions are not restricted to the expected role in anterior-posterior pattern formation, but they also regulate N-tubulin, thereby having an effect on the initial formation of primary neurons in Xenopus laevis embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Neurogénesis/genética , Transcripción Genética/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Biomarcadores , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Placa Neural/embriología , Placa Neural/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Receptores Notch/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
5.
Dev Dyn ; 236(2): 473-80, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16964606

RESUMEN

Lineage labeling is one of the most important techniques in developmental biology. Most recently, a set of photoactivatable fluorescent proteins originating from marine cnidarians became available. Here, we introduce the application of the green to red photoconvertible protein EosFP as a novel technique to analyze early vertebrate development. Both injection of EosFP mRNA and purified, recombinant EosFP followed by a light-driven green to red conversion allow lineage labeling in virtually any temporal and spatial dimension during embryonic development for at least 2 weeks. Specific staining of cells from nonsurface layers is greatly facilitated by light-driven conversion of EosFP compared with traditional methods. Therefore, green to red photoactivatable proteins promise to be a powerful tool with the potential to satisfy the increasing demand for methods enabling detailed phenotypical analyses after manipulations of morphogenetic events, gene expression, or signal transduction.


Asunto(s)
Linaje de la Célula/fisiología , Desarrollo Embrionario/fisiología , Proteínas Luminiscentes/metabolismo , ARN Mensajero/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Luminiscentes/aislamiento & purificación , Xenopus laevis
6.
Dev Dyn ; 236(1): 226-39, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17089409

RESUMEN

A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3-depleted embryos reveals severe deformation and false positioning of infrarostral, Meckel's, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST-pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC.


Asunto(s)
Nervios Craneales/embriología , Ojo/embriología , Factores de Transcripción Forkhead/fisiología , Maxilares/embriología , Proteínas de Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Biomarcadores , Proteínas Portadoras/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Nervios Craneales/metabolismo , Ojo/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Maxilares/metabolismo , Datos de Secuencia Molecular , Cresta Neural/embriología , Cresta Neural/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
7.
Dev Biol ; 268(1): 207-19, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15031117

RESUMEN

We report a novel developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior-posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that convergence and extension continually bring new cells from the non-organiser mesoderm within the range of organiser signals and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression.


Asunto(s)
Genes Homeobox , Mesodermo , Vertebrados/embriología , Animales , Tipificación del Cuerpo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA