Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1011436, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37285379

RESUMEN

The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.


Asunto(s)
Antimaláricos , Malaria Falciparum , Plasmodium falciparum , Quinolinas , Humanos , Antimaláricos/química , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Cinética , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Quinolinas/farmacología , Quinolinas/uso terapéutico
2.
J Biol Chem ; 298(2): 101507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929169

RESUMEN

Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.


Asunto(s)
COVID-19/metabolismo , Heparina/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Heparina/química , Heparina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Tratamiento Farmacológico de COVID-19
3.
J Chem Inf Model ; 63(15): 4691-4707, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37532679

RESUMEN

Human ecto-5'-nucleotidase (h-ecto-5'-NT, CD73) is a homodimeric Zn2+-binding metallophosphoesterase that hydrolyzes adenosine 5'-monophosphate (5'-AMP) to adenosine and phosphate. h-Ecto-5'-NT is a key enzyme in purinergic signaling pathways and has been recognized as a promising biological target for several diseases, including cancer and inflammatory, infectious, and autoimmune diseases. Despite its importance as a biological target, little is known about h-ecto-5'-NT dynamics, which poses a considerable challenge to the design of inhibitors of this target enzyme. Here, to explore h-ecto-5'-NT flexibility, all-atom unbiased molecular dynamics (MD) simulations were performed. Remarkable differences in the dynamics of the open (catalytically inactive) and closed (catalytically active) conformations of the apo-h-ecto-5'-NT were observed during the simulations, and the nucleotide analogue inhibitor AMPCP was shown to stabilize the protein structure in the closed conformation. Our results suggest that the large and complex domain motion that enables the h-ecto-5'-NT open/closed conformational switch is slow, and therefore, it could not be completely captured within the time scale of our simulations. Nonetheless, we were able to explore the faster dynamics of the h-ecto-5'-NT substrate binding site, which is mainly located at the C-terminal domain and well conserved among the protein's open and closed conformations. Using the TRAPP ("Transient Pockets in Proteins") approach, we identified transient subpockets close to the substrate binding site. Finally, conformational states of the substrate binding site with higher druggability scores than the crystal structure were identified. In summary, our study provides valuable insights into h-ecto-5'-NT structural flexibility, which can guide the structure-based design of novel h-ecto-5'-NT inhibitors.


Asunto(s)
5'-Nucleotidasa , Simulación de Dinámica Molecular , Humanos , Adenosina Monofosfato/metabolismo , Adenosina/farmacología , Sitios de Unión
4.
Bioorg Chem ; 138: 106615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37244229

RESUMEN

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Antiparasitarios/farmacología , Antiprotozoarios/farmacología , Éteres Fosfolípidos/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Colina/uso terapéutico
5.
BMC Genomics ; 23(1): 677, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180835

RESUMEN

BACKGROUND: With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). RESULTS: The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. CONCLUSIONS: The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7 .


Asunto(s)
Acantocéfalos , Enfermedades de los Peces , Acantocéfalos/química , Acantocéfalos/genética , Acantocéfalos/metabolismo , Animales , Antiparasitarios/farmacología , Enfermedades de los Peces/parasitología , Peces , Ligandos , Tadalafilo/metabolismo , Flujo de Trabajo
6.
J Cell Sci ; 134(5)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32034083

RESUMEN

During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.


Asunto(s)
Malaria , Parásitos , Actinas/genética , Animales , Plasmodium berghei , Profilinas/genética , Proteínas Protozoarias/genética
7.
Nature ; 536(7615): 219-23, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487212

RESUMEN

Signal recognition particle (SRP) is a universally conserved protein-RNA complex that mediates co-translational protein translocation and membrane insertion by targeting translating ribosomes to membrane translocons. The existence of parallel co- and post-translational transport pathways, however, raises the question of the cellular substrate pool of SRP and the molecular basis of substrate selection. Here we determine the binding sites of bacterial SRP within the nascent proteome of Escherichia coli at amino acid resolution, by sequencing messenger RNA footprints of ribosome-nascent-chain complexes associated with SRP. SRP, on the basis of its strong preference for hydrophobic transmembrane domains (TMDs), constitutes a compartment-specific targeting factor for nascent inner membrane proteins (IMPs) that efficiently excludes signal-sequence-containing precursors of periplasmic and outer membrane proteins. SRP associates with hydrophobic TMDs enriched in consecutive stretches of hydrophobic and bulky aromatic amino acids immediately on their emergence from the ribosomal exit tunnel. By contrast with current models, N-terminal TMDs are frequently skipped and TMDs internal to the polypeptide sequence are selectively recognized. Furthermore, SRP binds several TMDs in many multi-spanning membrane proteins, suggesting cycles of SRP-mediated membrane targeting. SRP-mediated targeting is not accompanied by a transient slowdown of translation and is not influenced by the ribosome-associated chaperone trigger factor (TF), which has a distinct substrate pool and acts at different stages during translation. Overall, our proteome-wide data set of SRP-binding sites reveals the underlying principles of pathway decisions for nascent chains in bacteria, with SRP acting as the dominant triaging factor, sufficient to separate IMPs from substrates of the SecA-SecB post-translational translocation and TF-assisted cytosolic protein folding pathways.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/biosíntesis , Isomerasa de Peptidilprolil/metabolismo , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteoma/biosíntesis , Proteómica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Especificidad por Sustrato
8.
Biophys J ; 120(17): 3747-3763, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293303

RESUMEN

Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.


Asunto(s)
Histonas , Nucleosomas , Secuencia de Bases , Transferencia Resonante de Energía de Fluorescencia , Histonas/genética , Histonas/metabolismo , Unión Proteica
9.
Annu Rev Phys Chem ; 71: 101-119, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32017651

RESUMEN

Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone-nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone-nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Pollos , Cromatina/química , ADN/química , ADN/metabolismo , Histonas/química , Simulación de Dinámica Molecular , Método de Montecarlo , Nucleosomas/química
10.
PLoS Biol ; 16(7): e2005345, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30011270

RESUMEN

Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit-subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mamíferos/metabolismo , Plasmodium falciparum/metabolismo , Subunidades de Proteína/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Alelos , Animales , Femenino , Estadios del Ciclo de Vida , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Parásitos/crecimiento & desarrollo , Fenotipo , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Conejos , Especificidad de la Especie , Esporozoítos/metabolismo
11.
J Chem Inf Model ; 61(7): 3708-3721, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34197096

RESUMEN

There is growing consensus that the optimization of the kinetic parameters for drug-protein binding leads to improved drug efficacy. Therefore, computational methods have been developed to predict kinetic rates and to derive quantitative structure-kinetic relationships (QSKRs). Many of these methods are based on crystal structures of ligand-protein complexes. However, a drawback is that each ligand-protein complex is usually treated as having a single structure. Here, we present a modification of COMparative BINding Energy (COMBINE) analysis, which uses the structures of ligand-protein complexes to predict binding parameters. We introduce the option of using multiple structures to describe each ligand-protein complex in COMBINE analysis and apply this to study the effects of protein flexibility on the derivation of dissociation rate constants (koff) for inhibitors of p38 mitogen-activated protein (MAP) kinase, which has a flexible binding site. Multiple structures were obtained for each ligand-protein complex by performing docking to an ensemble of protein configurations obtained from molecular dynamics simulations. Coefficients to scale ligand-protein interaction energies determined from energy-minimized structures of ligand-protein complexes were obtained by partial least squares regression, and they allowed for the computation of koff values. The QSKR model obtained using single, energy-minimized crystal structures for each ligand-protein complex had higher predictive power than the QSKR model obtained with multiple structures from ensemble docking. However, incorporation of ligand-protein flexibility helped to highlight additional ligand-protein interactions that lead to longer residence times, such as interactions with residues Arg67 and Asp168, which are close to the ligand in many crystal structures. These results show that COMBINE analysis is a promising method to guide the design of compounds that bind to flexible proteins with improved binding kinetics.


Asunto(s)
Preparaciones Farmacéuticas , Proteínas , Sitios de Unión , Humanos , Cinética , Ligandos , Unión Proteica
12.
Nature ; 524(7564): 247-51, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26245380

RESUMEN

Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregado de Proteínas , Animales , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/química , Humanos , Modelos Moleculares , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
13.
PLoS Pathog ; 14(9): e1007315, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30252911

RESUMEN

Kinetoplastid parasites-trypanosomes and leishmanias-infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition.


Asunto(s)
Benzoxazoles/farmacología , ARN Protozoario/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Animales , Benzoxazoles/química , Bovinos , Resistencia a Medicamentos/genética , Cabras , Humanos , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , Trans-Empalme/efectos de los fármacos , Tripanocidas/química , Trypanosoma brucei brucei/genética , Trypanosoma congolense/efectos de los fármacos , Trypanosoma congolense/genética , Trypanosoma congolense/metabolismo , Trypanosoma vivax/efectos de los fármacos , Trypanosoma vivax/genética , Trypanosoma vivax/metabolismo , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología
14.
PLoS Comput Biol ; 15(10): e1007382, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31665146

RESUMEN

Long-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time. However, the mechanism for this is currently unclear, and seems to lie in their diverse regulation patterns. Despite attempts to isolate the ternary complex, it is not known if Gαolf and Gαi can bind to AC5 simultaneously, nor what activity the complex would have. Using protein structure-based molecular dynamics simulations, we show that this complex is stable and inactive. These simulations, along with Brownian dynamics simulations to estimate protein association rates constants, constrain a kinetic model that shows that the presence of this ternary inactive complex is crucial for AC5's ability to detect coincident signals, producing a synergistic increase in cAMP. These results reveal some of the prerequisites for corticostriatal synaptic plasticity, and explain recent experimental data on cAMP concentrations following receptor activation. Moreover, they provide insights into the regulatory mechanisms that control signal processing by different AC isoforms.


Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Adenilil Ciclasas/fisiología , Animales , Cuerpo Estriado/fisiología , Perros , Cinética , Simulación de Dinámica Molecular , Plasticidad Neuronal , Neuronas/fisiología , Isoformas de Proteínas/metabolismo , Ratas , Transducción de Señal/fisiología
15.
J Chem Inf Model ; 60(3): 1685-1699, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32105476

RESUMEN

Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models, a logistic regression model (TRAPP-LR) and a convolutional neural network model (TRAPP-CNN), for predicting druggability and how it varies with changes in the spatial and physicochemical properties of a binding pocket. These models are integrated into TRAnsient Pockets in Proteins (TRAPP), a tool for the analysis of binding pocket variations along a protein motion trajectory. The models, which were trained on publicly available and self-augmented datasets, show equivalent or superior performance to existing methods on test sets of protein crystal structures and have sufficient sensitivity to identify potentially druggable protein conformations in trajectories from molecular dynamics simulations. Visualization of the evidence for the decisions of the models in TRAPP facilitates identification of the factors affecting the druggability of protein binding pockets.


Asunto(s)
Aprendizaje Automático , Proteínas , Sitios de Unión , Unión Proteica , Conformación Proteica , Proteínas/metabolismo
16.
J Chem Phys ; 153(12): 125102, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003755

RESUMEN

The dissociation of ligands from proteins and other biomacromolecules occurs over a wide range of timescales. For most pharmaceutically relevant inhibitors, these timescales are far beyond those that are accessible by conventional molecular dynamics (MD) simulation. Consequently, to explore ligand egress mechanisms and compute dissociation rates, it is necessary to enhance the sampling of ligand unbinding. Random Acceleration MD (RAMD) is a simple method to enhance ligand egress from a macromolecular binding site, which enables the exploration of ligand egress routes without prior knowledge of the reaction coordinates. Furthermore, the τRAMD procedure can be used to compute the relative residence times of ligands. When combined with a machine-learning analysis of protein-ligand interaction fingerprints (IFPs), molecular features that affect ligand unbinding kinetics can be identified. Here, we describe the implementation of RAMD in GROMACS 2020, which provides significantly improved computational performance, with scaling to large molecular systems. For the automated analysis of RAMD results, we developed MD-IFP, a set of tools for the generation of IFPs along unbinding trajectories and for their use in the exploration of ligand dynamics. We demonstrate that the analysis of ligand dissociation trajectories by mapping them onto the IFP space enables the characterization of ligand dissociation routes and metastable states. The combined implementation of RAMD and MD-IFP provides a computationally efficient and freely available workflow that can be applied to hundreds of compounds in a reasonable computational time and will facilitate the use of τRAMD in drug design.


Asunto(s)
Sustancias Macromoleculares/química , Simulación de Dinámica Molecular , Proteínas/química , Ligandos , Aprendizaje Automático
17.
Biophys J ; 116(3): 419-432, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30658838

RESUMEN

Human cytochrome P450 (CYP) enzymes play an important role in the metabolism of drugs, steroids, fatty acids, and xenobiotics. Microsomal CYPs are anchored in the endoplasmic reticulum membrane by an N-terminal transmembrane (TM) helix that is connected to the globular catalytic domain by a flexible linker sequence. However, the structural and functional importance of the TM-helix is unclear because it has been shown that CYPs can still associate with the membrane and have enzymatic activity in reconstituted systems after truncation or modification of the N-terminal sequence. Here, we investigated the effect of mutations in the N-terminal TM-helix residues of two human steroidogenic enzymes, CYP 17A1 and CYP 19A1, that are major drug targets for cancer therapy. These mutations were originally introduced to increase the expression of the proteins in Escherichia coli. To investigate the effect of the mutations on protein-membrane interactions and function, we carried out coarse-grained and all-atom molecular dynamics simulations of the CYPs in a phospholipid bilayer. We confirmed the orientations of the globular domain in the membrane observed in the simulations by linear dichroism measurements in a Nanodisc. Whereas the behavior of CYP 19A1 was rather insensitive to truncation of the TM-helix, mutations in the TM-helix of CYP 17A1, especially W2A and E3L, led to a gradual drifting of the TM-helix out of the hydrophobic core of the membrane. This instability of the TM-helix could affect interactions with the allosteric redox partner, cytochrome b5, required for CYP 17A1's lyase activity. Furthermore, the simulations showed that the mutant TM-helix influenced the membrane interactions of the CYP 17A1 globular domain. In some simulations, the mutated TM-helix obstructed the substrate access tunnel from the membrane to the CYP active site, indicating a possible effect on enzyme function.


Asunto(s)
Aromatasa/química , Aromatasa/metabolismo , Membrana Celular/metabolismo , Mutación , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/metabolismo , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Esteroide 17-alfa-Hidroxilasa/genética
18.
J Mol Recognit ; 37(3): e3081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38468426
19.
PLoS Pathog ; 13(5): e1006412, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28552953

RESUMEN

Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, apicomplexan profilins contain an additional arm-like ß-hairpin motif, which we show here to be critically involved in actin binding. Through comparative analysis using two profilin mutants, we reveal this motif to be implicated in gliding motility of Plasmodium berghei sporozoites, the rapidly migrating forms of a rodent malaria parasite transmitted by mosquitoes. Force measurements on migrating sporozoites and molecular dynamics simulations indicate that the interaction between actin and profilin fine-tunes gliding motility. Our data suggest that evolutionary pressure to achieve efficient high-speed gliding has resulted in a unique profilin-actin interface in these parasites.


Asunto(s)
Actinas/metabolismo , Malaria/parasitología , Plasmodium berghei/citología , Plasmodium berghei/metabolismo , Profilinas/metabolismo , Proteínas Protozoarias/metabolismo , Actinas/genética , Animales , Movimiento Celular , Femenino , Humanos , Ratones Endogámicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Profilinas/genética , Unión Proteica , Proteínas Protozoarias/genética , Esporozoítos/citología , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo
20.
J Chem Inf Model ; 59(9): 3630-3634, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31381336

RESUMEN

The past few years have seen increasing recognition of the importance of understanding molecular binding kinetics. This has led to the development of myriad computational methods for studying the kinetics of binding processes and predicting their associated rate constants that show varying ranges of application, degrees of accuracy, and computational requirements. In order to help researchers decide which method might be suitable for their projects, we have developed KBbox, a web server that guides users in choosing the methods they should consider on the basis of the information they wish to obtain, the data they currently have available, and the computational resources to which they have access. KBbox provides information on the toolbox of available methods, their associated software tools, an expanding list of curated examples of published applications, and tutorials explaining how to apply some of the methods. It has been designed to allow the easy addition of new methods, tools, and examples as they are developed and published. KBbox is available at https://kbbox.h-its.org/ .


Asunto(s)
Descubrimiento de Drogas , Programas Informáticos , Sitios de Unión , Descubrimiento de Drogas/métodos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA