Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 137(Pt 3): 668-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24480485

RESUMEN

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Animales , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Glutatión/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Estrés Oxidativo , Fenotipo
2.
PLoS One ; 4(4): e5160, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19340293

RESUMEN

Proteins controlling mitochondrial dynamics are often targeted to and anchored into the mitochondrial outer membrane (MOM) by their carboxyl-terminal tail-anchor domain (TA). However, it is not known whether the TA modulates protein function. GDAP1 is a mitochondrial fission factor with two neighboring hydrophobic domains each flanked by basic amino acids (aa). Here we define GDAP1 as TA MOM protein. GDAP1 carries a single transmembrane domain (TMD) that is, together with the adjacent basic aa, critical for MOM targeting. The flanking N-terminal region containing the other hydrophobic domain is located in the cytoplasm. TMD sequence, length, and high hydrophobicity do not influence GDAP1 fission function if MOM targeting is maintained. The basic aa bordering the TMD in the cytoplasm, however, are required for both targeting of GDAP1 as part of the TA and GDAP1-mediated fission. Thus, this GDAP1 region contains critical overlapping motifs defining intracellular targeting by the TA concomitant with functional aspects.


Asunto(s)
Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA