Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(7): e23604, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591106

RESUMEN

With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 µM WNK463, while 1 µM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 µM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 µM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.


Asunto(s)
Actinas , Próstata , Masculino , Humanos , Actinas/metabolismo , Contracción Muscular/fisiología , Células del Estroma/metabolismo , Proliferación Celular , Isoformas de Proteínas/metabolismo
2.
Pharmacol Rep ; 76(4): 807-822, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858312

RESUMEN

BACKGROUND: Apart from antagonizing ß-adrenoceptors, carvedilol antagonizes vascular α1-adrenoceptors and activates G protein-independent signaling. Even though it is a commonly used antihypertensive and α1-adrenoceptors are essential for the treatment of voiding symptoms in benign prostatic hyperplasia, its actions in the human prostate are still unknown. Here, we examined carvedilol effects on contractions of human prostate tissues, and on stromal cell growth. METHODS: Contractions of prostate tissues from radical prostatectomy were induced by electric field stimulation (EFS) or α1-agonists. Growth-related functions were examined in cultured stromal cells. RESULTS: Concentration-response curves for phenylephrine, methoxamine and noradrenaline were right shifted by carvedilol (0.1-10 µM), around half a magnitude with 100 nM, half to one magnitude with 1 µM, and two magnitudes with 10 µM. Right shifts were reflected by increased EC50 values for agonists, with unchanged Emax values. EFS-induced contractions were reduced by 21-54% with 0.01-1 µM carvedilol, and by 94% by 10 µM. Colony numbers of stromal cells were increased by 500 nM, but reduced by 1-10 µM carvedilol, while all concentrations reduced colony size. Decreases in viability were time-dependent with 0.1-0.3 µM, but complete with 10 µM. Proliferation was slightly increased by 0.1-0.5 µM, but reduced with 1-10 µM. CONCLUSIONS: Carvedilol antagonizes α1-adrenoceptors in the human prostate, starting with concentrations in ranges of known plasma levels. In vitro, effect sizes resemble those of α1-blockers used for the treatment of voiding symptoms, which requires concentrations beyond plasma levels. Bidirectional and dynamic effects on the growth of stromal cells may be attributed to "biased agonism".


Asunto(s)
Carvedilol , Proliferación Celular , Relación Dosis-Respuesta a Droga , Próstata , Células del Estroma , Carvedilol/farmacología , Humanos , Masculino , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Próstata/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Células Cultivadas , Estimulación Eléctrica , Norepinefrina/farmacología , Propanolaminas/farmacología , Persona de Mediana Edad , Anciano , Metoxamina/farmacología , Fenilefrina/farmacología , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/patología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA