Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 487-508, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
2.
Am J Hum Genet ; 110(8): 1343-1355, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541188

RESUMEN

Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.


Asunto(s)
Genoma Humano , Trastornos del Neurodesarrollo , Humanos , Genoma Humano/genética , Mapeo Cromosómico , Secuencia de Bases , Mutación INDEL , Trastornos del Neurodesarrollo/genética
3.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37467750

RESUMEN

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , ARN Helicasas DEAD-box/genética , Diclorodifenil Dicloroetileno , ADN Helicasas , Mamíferos , Proteínas de Neoplasias/genética
4.
Brain ; 147(8): 2775-2790, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456468

RESUMEN

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.


Asunto(s)
Glicosilfosfatidilinositoles , Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Estudios Retrospectivos , Lactante , Adulto , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/genética , Adulto Joven , Trastornos Congénitos de Glicosilación/genética , Fenotipo , Convulsiones/genética
5.
Clin Genet ; 105(5): 555-560, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38287449

RESUMEN

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Mutación , Mutación Missense/genética , Fenotipo , Factores de Transcripción/genética
6.
J Med Genet ; 60(7): 712-716, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36543535

RESUMEN

INTRODUCTION: SPRY1 encodes protein sprouty homolog 1 (Spry-1), a negative regulator of receptor tyrosine kinase signalling. Null mutant mice display kidney/urinary tract abnormalities and altered size of the skull; complete loss-of-function of Spry-1 in humans has not been reported. METHODS: Analysis of whole-genome sequencing data from individuals with craniosynostosis enrolled in the 100,000 Genomes Project identified a likely pathogenic variant within SPRY1. Reverse-transcriptase PCR and western blot analysis were used to investigate the effect of the variant on SPRY1 mRNA and protein, in lymphoblastoid cell lines from the patient and both parents. RESULTS: A nonsense variant in SPRY1, encoding p.(Leu27*), was confirmed to be heterozygous in the unaffected parents and homozygous in the child. The child's phenotype, which included sagittal craniosynostosis, subcutaneous cystic lesions overlying the lambdoid sutures, hearing loss associated with bilateral cochlear and vestibular dysplasia and a unilateral renal cyst, overlapped the features reported in Spry1-/- null mice. Functional studies supported escape from nonsense-mediated decay, but western blot analysis demonstrated complete absence of full-length protein in the affected child and a marked reduction in both parents. CONCLUSION: This is the first report of complete loss of Spry-1 function in humans, associated with abnormalities of the cranial sutures, inner ear, and kidneys.


Asunto(s)
Craneosinostosis , Oído Interno , Sistema Urinario , Ratones , Animales , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Ratones Noqueados , Craneosinostosis/genética
7.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33232675

RESUMEN

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Discapacidades del Desarrollo/genética , Mutación Missense , Fenotipo , Proteínas Supresoras de Tumor/genética , Adolescente , Animales , Niño , Preescolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Genes Dominantes , Variación Genética , Haploinsuficiencia , Humanos , Lactante , Masculino , Microscopía Confocal , Neuroglía/metabolismo , Neuronas/metabolismo , Unión Proteica , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Genet Med ; 25(10): 100927, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422718

RESUMEN

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Asunto(s)
Anomalías Craneofaciales , Hipospadias , Masculino , Humanos , Hipospadias/genética , Factores de Empalme de ARN/genética , Empalme del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transactivadores/genética , Proteínas de Unión al ARN/genética
9.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37523899

RESUMEN

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Asunto(s)
Epilepsia , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Humanos , Lactante , Recién Nacido , Epilepsia/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/metabolismo
10.
J Hum Genet ; 68(7): 445-453, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36864284

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS: Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS: We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION: Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.


Asunto(s)
Mutación Missense , Trastornos del Neurodesarrollo , Factores de Elongación Transcripcional , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional/genética , Trastornos del Neurodesarrollo/genética
11.
Genet Med ; 24(6): 1261-1273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341651

RESUMEN

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Asunto(s)
Metilación de ADN , Hipogonadismo , Síndrome de Klinefelter , Trastornos del Neurodesarrollo , Factores de Transcripción SOXC , Metilación de ADN/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Factores de Transcripción SOXC/genética , Secuenciación del Exoma
12.
Clin Endocrinol (Oxf) ; 97(3): 284-292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35261046

RESUMEN

OBJECTIVE: Silver-Russell syndrome (SRS) causes short stature. Growth hormone (GH) treatment aims to increase adult height. However, data are limited on the long-term outcomes of GH in patients with molecularly confirmed SRS. This study evaluated height, body mass index (BMI) and GH treatment in molecularly confirmed SRS. DESIGN: An observational study with retrospective data collection. PATIENTS: Individuals with molecularly confirmed SRS aged ≥13 years. MEASUREMENTS: Data were collected on height, height gain (change in height standard deviation score [SDS] from childhood to final or near-final height), BMI and gain in BMI (from childhood to adulthood) and previous GH treatment. RESULTS: Seventy-one individuals (40 female) were included. The median age was 22.0 years (range 13.2-69.7). The molecular diagnoses: H19/IGF2:IG-DMR LOM in 80.3% (57/71); upd(7)mat in 16.9% (12/71) and IGF2 mutation in 2.8% (2/71). GH treatment occurred in 77.5% (55/71). Total height gain was greater in GH-treated individuals (median 1.53 SDS vs. 0.53 SDS, p = .007), who were shorter at treatment initiation (-3.46 SDS vs. -2.91 SDS, p = .04) but reached comparable heights to GH-untreated individuals (-2.22 SDS vs. -2.74 SDS, p = .7). In GH-treated individuals, BMI SDS was lower at the most recent assessment (median -1.10 vs. 1.66, p = .002) with lower BMI gain (2.01 vs. 3.58, p = .006) despite similar early BMI SDS to GH-untreated individuals (median -2.65 vs. -2.78, p = .3). CONCLUSIONS: These results support the use of GH in SRS for increasing height SDS. GH treatment was associated with lower adult BMI which may reflect improved metabolic health even following discontinuation of therapy.


Asunto(s)
Estatura , Índice de Masa Corporal , Hormona de Crecimiento Humana , Síndrome de Silver-Russell , Adolescente , Adulto , Anciano , Femenino , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Síndrome de Silver-Russell/tratamiento farmacológico , Adulto Joven
13.
J Med Genet ; 57(10): 683-691, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32054688

RESUMEN

BACKGROUND: Silver-Russell syndrome is an imprinting disorder that restricts growth, resulting in short adult stature that may be ameliorated by treatment. Approximately 50% of patients have loss of methylation of the imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 and 5%-10% have maternal uniparental disomy of chromosome 7. Most published research focuses on the childhood phenotype. Our aim was to describe the phenotypic characteristics of older patients with SRS. METHODS: A retrospective cohort of 33 individuals with a confirmed molecular diagnosis of SRS aged 13 years or above were carefully phenotyped. RESULTS: The median age of the cohort was 29.6 years; 60.6% had a height SD score (SDS) ≤-2 SDS despite 70% having received growth hormone treatment. Relative macrocephaly, feeding difficulties and a facial appearance typical of children with SRS were no longer discriminatory diagnostic features. In those aged ≥18 years, impaired glucose tolerance in 25%, hypertension in 33% and hypercholesterolaemia in 52% were noted. While 9/33 accessed special education support, university degrees were completed in 40.0% (>21 years). There was no significant correlation between quality of life and height SDS. 9/25 were parents and none of the 17 offsprings had SRS. CONCLUSION: Historical treatment regimens for SRS were not sufficient for normal adult growth and further research to optimise treatment is justified. Clinical childhood diagnostic scoring systems are not applicable to patients presenting in adulthood and SRS diagnosis requires molecular confirmation. Metabolic ill-health warrants further investigation but SRS is compatible with a normal quality of life including normal fertility in many cases.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/genética , ARN Largo no Codificante/genética , Síndrome de Silver-Russell/genética , Disomía Uniparental/genética , Adolescente , Adulto , Anciano , Metilación de ADN/genética , Epigénesis Genética , Femenino , Impresión Genómica/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Calidad de Vida , Síndrome de Silver-Russell/patología , Disomía Uniparental/patología , Adulto Joven
14.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28041643

RESUMEN

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Asunto(s)
Análisis Mutacional de ADN , Variación Genética/genética , Genoma Humano/genética , Enfermedades de la Retina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Secuencia de Bases , Coroideremia/genética , Etnicidad/genética , Exoma/genética , Femenino , Genes Recesivos/genética , Humanos , Intrones/genética , Masculino , Mutación , Enfermedades Raras/genética
15.
Genet Med ; 22(1): 124-131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316167

RESUMEN

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Asunto(s)
Aracnodactilia/diagnóstico , Contractura/diagnóstico , Fibrilina-2/genética , Análisis de Secuencia de ADN/métodos , Aracnodactilia/genética , Niño , Contractura/genética , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Pruebas Genéticas , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad
16.
Hum Mutat ; 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31646703

RESUMEN

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

17.
J Med Genet ; 55(12): 803-813, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30287594

RESUMEN

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.


Asunto(s)
Edema Encefálico/diagnóstico , Edema Encefálico/etiología , Epilepsia/diagnóstico , Epilepsia/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/etiología , Atrofia Óptica/diagnóstico , Atrofia Óptica/etiología , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/etiología , Factores de Edad , Alelos , Biomarcadores , Preescolar , Electroencefalografía , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genotipo , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Fenotipo
18.
J Med Genet ; 55(1): 28-38, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021403

RESUMEN

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Asunto(s)
Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación/genética , Adolescente , Niño , Secuencia Conservada , Femenino , Heterocigoto , Humanos , Masculino , Modelos Moleculares , Mutación Missense/genética , Dominios Proteicos , Síndrome , Termodinámica
19.
J Med Genet ; 55(7): 497-504, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574422

RESUMEN

BACKGROUND: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. METHODS: Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. RESULTS: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. CONCLUSION: The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Beckwith-Wiedemann/genética , Desiminasas de la Arginina Proteica/genética , Síndrome de Silver-Russell/genética , Proteínas Reguladoras de la Apoptosis , Síndrome de Beckwith-Wiedemann/patología , Cromosomas Humanos Par 11/genética , Metilación de ADN/genética , Femenino , Impresión Genómica/genética , Mutación de Línea Germinal/genética , Humanos , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/fisiopatología , Herencia Materna , Linaje , Embarazo , Arginina Deiminasa Proteína-Tipo 6 , Síndrome de Silver-Russell/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA