RESUMEN
Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.
Asunto(s)
Nitrógeno , Zea mays , Zea mays/genética , Familia , Semillas/genéticaRESUMEN
Opaque2 (O2) functions as a central regulator of the synthesis of starch and storage proteins and the O2 gene is transcriptionally regulated by a hub coordinator of seed development and grain filling, ABSCISIC ACID INSENSITIVE 19 (ZmABI19), in maize (Zea mays). Here, we identified a second hub coordinator, basic Leucine Zipper 29 (ZmbZIP29) that interacts with ZmABI19 to regulate O2 expression. Like zmabi19, zmbzip29 mutations resulted in a dramatic decrease of transcript and protein levels of O2 and thus a significant reduction of starch and storage proteins. zmbzip29 seeds developed slower and had a smaller size at maturity than those of the wild type. The zmbzip29;zmabi19 double mutant displayed more severe seed phenotypes and a greater reduction of storage reserves compared to the single mutants, whereas overexpression of the two transcription factors enhanced O2 expression, storage-reserve accumulation, and kernel weight. ZmbZIP29, ZmABI19, and O2 expression was induced by abscisic acid (ABA). With ABA treatment, ZmbZIP29 and ZmABI19 synergistically transactivated the O2 promoter. Through liquid chromatography tandem-mass spectrometry analysis, we established that the residues threonine(T) 57 in ZmABI19, T75 in ZmbZIP29, and T387 in O2 were phosphorylated, and that SnRK2.2 was responsible for the phosphorylation. The ABA-induced phosphorylation at these sites was essential for maximum transactivation of downstream target genes for endosperm filling in maize.
Asunto(s)
Endospermo , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Endospermo/genética , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Leucina Zippers , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Activación Transcripcional , Zea mays/genética , Zea mays/metabolismoRESUMEN
Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.
Asunto(s)
Proteínas de Plantas , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Sitios de Carácter Cuantitativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Variación Genética , Endospermo/genética , Endospermo/metabolismo , Endospermo/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.
Asunto(s)
Semillas , Zea mays , Transporte Activo de Núcleo Celular , Zea mays/metabolismo , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Grano Comestible/metabolismoRESUMEN
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Asunto(s)
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Zea mays/genéticaRESUMEN
Cell number is a critical factor that determines kernel size in maize (Zea mays). Rapid mitotic divisions in early endosperm development produce most of the cells that make up the starchy endosperm; however, the mechanisms underlying early endosperm development remain largely unknown. We isolated a maize mutant that shows a varied-kernel-size phenotype (vks1). Vks1 encodes ZmKIN11, which belongs to the kinesin-14 subfamily and is predominantly expressed in early endosperm development. VKS1 dynamically localizes to the nucleus and microtubules and plays key roles in the migration of free nuclei in the coenocyte as well as in mitosis and cytokinesis in early mitotic divisions. Absence of VKS1 has relatively minor effects on plants but causes deformities in spindle assembly, sister chromatid separation, and phragmoplast formation in early endosperm development, thereby resulting in reduced cell proliferation. Severities of aberrant mitosis and cytokinesis within individual vks1 endosperms differ, thereby resulting in varied kernel sizes. Our discovery highlights VKS1 as a central regulator of mitosis in early maize endosperm development and provides a potential approach for future yield improvement.
Asunto(s)
Citocinesis/fisiología , Endospermo/metabolismo , Mitosis/fisiología , Zea mays/citología , Zea mays/metabolismo , Citocinesis/genética , Endospermo/citología , Mitosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The endosperm-specific transcription factor Opaque2 (O2) acts as a central regulator for endosperm filling, but its functions have not been fully defined. Regular o2 mutants exhibit a non-vitreous phenotype, so we used its vitreous variety Quality Protein Maize to create EMS-mutagenesis mutants for screening o2 enhancers (oen). A mutant (oen1) restored non-vitreousness and produced a large cavity in the seed due to severely depleted endosperm filling. When oen1 was introgressed into inbred W64A with a normal O2 gene, the seeds appeared vitreous but had a shrunken crown. oen1 was determined to encode Shrunken1 (Sh1), a sucrose synthase (SUS, EC 2.4.1.13). Maize contains three SUS-encoding genes (Sh1, Sus1, and Sus2) with Sh1 contributing predominantly to the endosperm. We determined SUS activity and found a major and minor reduction in oen1 and o2, respectively. In o2;oen1-1, SUS activity was further decreased. We found all Sus gene promoters contain at least one O2 binding element that can be specifically recognized and be transactivated by O2. Sus1 and Sus2 promoters had a much stronger O2 transactivation than Sh1, consistent with their transcript reduction in o2 endosperm. Although sus1 and sus2 alone or in combination had no perceptible phenotype, either of them could dramatically enhance seed opacity and cavity in sh1, indicating that transactivation of Sus1 and Sus2 by O2 supplements SUS-mediated endosperm filling in maize. Our findings demonstrate that O2 transcriptionally regulates the metabolic source entry for protein and starch synthesis during endosperm filling.
Asunto(s)
Endospermo , Zea mays , Endospermo/genética , Endospermo/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Activación Transcripcional/genética , Zea mays/genética , Zea mays/metabolismoRESUMEN
Maize (Zea mays) floury3 (fl3) is a classic semidominant negative mutant that exhibits severe defects in the endosperm but fl3 plants otherwise appear normal. We cloned the fl3 gene and determined that it encodes a PLATZ (plant AT-rich sequence and zinc binding) protein. The mutation in fl3 resulted in an Asn-to-His replacement in the conserved PLATZ domain, creating a dominant allele. Fl3 is specifically expressed in starchy endosperm cells and regulated by genomic imprinting, which leads to the suppressed expression of fl3 when transmitted through the male, perhaps as a consequence the semidominant behavior. Yeast two-hybrid screening and bimolecular luciferase complementation experiments revealed that FL3 interacts with the RNA polymerase III subunit 53 (RPC53) and transcription factor class C 1 (TFC1), two critical factors of the RNA polymerase III (RNAPIII) transcription complex. In the fl3 endosperm, the levels of many tRNAs and 5S rRNA that are transcribed by RNAPIII are significantly reduced, suggesting that the incorrectly folded fl3 protein may impair the function of RNAPIII. The transcriptome is dramatically altered in fl3 mutants, in which the downregulated genes are primarily enriched in pathways related to translation, ribosome, misfolded protein responses, and nutrient reservoir activity. Collectively, these changes may lead to defects in endosperm development and storage reserve filling in fl3 seeds.
Asunto(s)
Impresión Genómica/genética , Zea mays/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico 5S/genética , ARN de Transferencia/genéticaRESUMEN
The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.
Asunto(s)
Endospermo , Duplicación de Gen , Genes de Plantas , Zea mays/genética , Zeína/genética , Cromosomas de las Plantas , Sitios de Carácter CuantitativoRESUMEN
BACKGROUND: PLATZ proteins are a novel class of plant-specific zinc-dependent DNA-binding proteins that are classified as transcription factors (TFs). However, their common biochemical features and functions are poorly understood. RESULT: Here, we identified and cloned 17 PLATZ genes in the maize (Zea mays) genome. All ZmPLATZs were located in nuclei, consistent with their predicted role as TFs. However, none of ZmPLATZs was found to have intrinsic activation properties in yeast. Our recent work shows that FL3 (ZmPLATZ12) interacts with RPC53 and TFC1, two critical factors in the RNA polymerase III (RNAPIII) transcription complex. Using the yeast two-hybrid assay, we determined that seven other PLATZs interacted with both RPC53 and TFC1, whereas three had no protein-protein interaction with these two factors. The other six PLATZs interacted with either RPC53 or TFC1. These findings indicate that ZmPLATZ proteins are generally involved in the modulation of RNAPIII-mediated small non-coding RNA transcription. We also identified all of the PLATZ members in rice (Oryza sativa) and Arabidopsis thaliana and constructed a Maximum likelihood phylogenetic tree for ZmPLATZs. The resulting tree included 44 members and 5 subfamilies. CONCLUSIONS: This study provides insight into understanding of the phylogenetic relationship, protein structure, expression pattern and cellular localization of PLATZs in maize. We identified nine and thirteen ZmPLATZs that have protein-protein interaction with RPC53 and TFC1 in the current study, respectively. Overall, the characterization and functional analysis of the PLATZ family in maize will pave the way to understanding RNAPIII-mediated regulation in plant development.
Asunto(s)
Proteínas de Plantas/genética , ARN Polimerasa III/metabolismo , Zea mays/genética , Arabidopsis/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Dominios Proteicos , Mapas de Interacción de Proteínas , ARN Polimerasa III/genética , ARN Ribosómico 5S/metabolismo , ARN de Transferencia/metabolismo , Zea mays/metabolismoRESUMEN
Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.
RESUMEN
Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.
RESUMEN
Typhoons can bring substantial casualties and economic ramifications, and effective prevention strategies necessitate a comprehensive risk assessment. Nevertheless, existing studies on its comprehensive risk assessment are characterized by coarse spatial scales, limited incorporation of geographic big data, and rarely considering disaster mitigation capacity. To address these problems, this study combined multi-source geographic big data to develop the Comprehensive Risk Assessment Model (CRAM). The model integrated 17 indicators from 4 categories of factors, including exposure, vulnerability, hazard, and mitigation capacity. A subjective-objective combination weighting method was introduced to generate the indicator weights, and comprehensive risk index of typhoon disasters was calculated for 987 counties along China's coastal regions. Results revealed a pronounced spatial heterogeneity of the comprehensive typhoon risk, which exhibited an overall decreasing trend from the southeast coastal areas toward the northwest inland territories. 61.7 % of the counties exhibited a medium-to-high level of comprehensive risk, and counties with very-high risks are predominantly concentrated in the Shandong Peninsula, Yangtze River Delta, Hokkien Golden Triangle, Greater Bay Area, Leizhou Peninsula, and Hainan Province, mainly due to high exposure and hazard factors. The correlation coefficient between the risk assessment results and typhoon-induced direct economic losses reached 0.702, indicating the effectiveness and reliability of the CRAM. Meanwhile, indicators from intrinsic attributes of typhoons and geographic big data had pronounced importance, and regional mitigation capacity should be improved. Our proposed method can help to scientifically understand spatial patterns of comprehensive risk and mitigate the effects of typhoon disasters in China's coastal regions.
RESUMEN
Selecting thresholds to convert continuous predictions of species distribution models proves critical for many real-world applications and model assessments. Prevalent threshold selection methods for presence-only data require unproven pseudo-absence data or subjective researchers' decisions. This study proposes a new method, Boyce-Threshold Quantile Regression (BTQR), to determine thresholds objectively without pseudo-absence data. We summarize that the mutation point is a typical shape feature of the predicted-to-expected (P/E) curve after reviewing relevant articles. Analysis based on source-sink theory suggests that this mutation point may represent a transition in habitat types and serve as an appropriate threshold. Threshold regression is introduced to accurately locate the mutation point. To validate the effectiveness of BTQR, we used four virtual species of varying prevalence and a real species with reliable distribution data. Six different species distribution models were employed to generate continuous suitability predictions. BTQR and nine other traditional methods transformed these continuous outputs into binary results. Comparative experiments show that BTQR has advantages in terms of accuracy, applicability, and consistency over the existing methods.
RESUMEN
The Myeloblastosis (MYB) transcription factor (TF) family is one of the largest transcription factor families in plants and plays an important role in various physiological processes. At present, there are few reports on birch (Betula platyphylla Suk.) of R2R3-MYB-TFs, and most BpMYBs still need to be characterized. In this study, 111 R2R3-MYB-TFs with conserved R2 and R3 MYB domains were identified. Phylogenetic tree analysis showed that the MYB family members of Arabidopsis thaliana and birch were divided into 23 and 21 subgroups, respectively. The latter exhibited an uneven distribution across 14 chromosomes. There were five tandem duplication events and 17 segmental duplication events between BpMYBs, and repeat events play an important role in the expansion of the family. In addition, the promoter region of MYBs was rich in various cis-acting elements, and MYB-TFs were involved in plant growth and development, light responses, biotic stress, and abiotic stress. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results revealed that most R2R3-MYB-TFs in birch responded to salt stress. In particular, the expression of BpMYBs in the S20 subfamily was significantly induced by salt, drought, abscisic acid, and methyl jasmonate stresses. Based on the weighted co-expression network analysis of physiological and RNA-seq data of birch under salt stress, a key MYB-TF BpMYB95 (BPChr12G24087), was identified in response to salt stress, and its expression level was induced by salt stress. BpMYB95 is a nuclear localization protein with transcriptional activation activity in yeast and overexpression of this gene significantly enhanced salt tolerance in Saccharomyces cerevisiae. The qRT-PCR and histochemical staining results showed that BpMYB95 exhibited the highest expression in the roots, young leaves, and petioles of birch plants. Overexpression of BpMYB95 significantly improved salt-induced browning and wilting symptoms in birch leaves and alleviated the degree of PSII photoinhibition caused by salt stress in birch seedlings. In conclusion, most R2R3-MYB-TFs found in birch were involved in the salt stress response mechanisms. Among these, BpMYB95 was a key regulatory factor that significantly enhanced salt tolerance in birch. The findings of this study provide valuable genetic resources for the development of salt-tolerant birch varieties.
Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Betula/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Estrés Fisiológico/genética , Estrés Salino/genética , Plantas Modificadas Genéticamente/genéticaRESUMEN
Dent and flint kernel architectures are important characteristics that affect the physical properties of maize kernels and their grain end uses. The genes controlling these traits are unknown, so it is difficult to combine the advantageous kernel traits of both. We found mutation of ARFTF17 in a dent genetic background reduces IAA content in the seed pericarp, creating a flint-like kernel phenotype. ARFTF17 is highly expressed in the pericarp and encodes a protein that interacts with and inhibits MYB40, a transcription factor with the dual functions of repressing PIN1 expression and transactivating genes for flavonoid biosynthesis. Enhanced flavonoid biosynthesis could reduce the metabolic flux responsible for auxin biosynthesis. The decreased IAA content of the dent pericarp appears to reduce cell division and expansion, creating a shorter, denser kernel. Introgression of the ARFTF17 mutation into dent inbreds and hybrids improved their kernel texture, integrity, and desiccation, without affecting yield.
Asunto(s)
Semillas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fenotipo , Semillas/genética , Mutación , Flavonoides/metabolismoRESUMEN
Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Endospermo/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Almidón/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Endospermo/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismoRESUMEN
The effects of overexpression of the thioredoxin-like protein CDSP32 (Trx CDSP32) on reactive oxygen species (ROS) metabolism in tobacco leaves exposed to cadmium (Cd) were studied by combining physiological measures and proteomics technology. Thus, the number of differentially expressed proteins (DEPs) in plants overexpressing the Trx CDSP32 gene in tobacco (OE) was observed to be evidently lower than that in wild-type (WT) tobacco under Cd exposure, especially the number of down-regulated DEPs. Cd exposure induced disordered ROS metabolism in tobacco leaves. Although Cd exposure inhibited the activities of superoxide dismutase (SOD), catalase (CAT), and l-ascorbate peroxidase (APX) and the expression of proteins related to the thioredoxin-peroxiredoxin (Trx-Prx) pathway, the increase in the activities of peroxidase (POD), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione S-transferase (GST) and their protein expression levels played an important role in the physiological response to Cd exposure. Notably, Trx CDSP32 was observed to alleviate the decrease in the expression and activities of SOD and CAT caused by Cd exposure and enhance the function of POD. Trx CDSP32 was observed to increase the H2O2 scavenging capacity of the ascorbic acid-glutathione (AsA-GSH) cycle and Trx-Prx pathway under Cd exposure, and it can especially regulate 2-Cys peroxiredoxin (2-Cys Prx) protein expression and thioredoxin peroxidase (TPX) activity. Thus, overexpression of the Trx CDSP32 gene can alleviate the oxidative damage that occurs in tobacco leaves under Cd exposure by modulating antioxidant defense systems.
Asunto(s)
Antioxidantes , Cadmio , Antioxidantes/metabolismo , Cadmio/toxicidad , Nicotiana/genética , Nicotiana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacología , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologíaRESUMEN
Developing a nanosystem that can perform multimodal imaging-guided combination therapy is highly desirable but challenging. In this study, we introduced multifunctional nanoparticles (NPs) consisting of graphene oxide-grafted hollow mesoporous organosilica loaded with the drug doxorubicin (DOX) and photosensitizers tetraphenylporphyrin (TPP). These NPs were encapsulated by thermosensitive liposomes that release their contents once the temperature exceeds a certain threshold. Metal oxide NPs grown on the graphene oxide (GO) surface served multiple roles, including enhancing photothermal efficiency, acting as contrast agents to improve magnetic resonance imaging, increasing the sensitivity and specificity of photoacoustic imaging, and catalysing hydrogen peroxide for the generation of reactive oxygen species (ROS). When locally injected, the HMONs-rNGO@Fe3 O4 /MnOx@FA/DOX/TPP NPs effectively enriched in subcutaneous Hela cell tumour of mice. The photothermal/photodynamic/chemo combination therapy triggered by near-infrared (NIR) successfully suppressed the tumour without noticeable side effects. This study presented a unique approach to develop multimodal imaging-guided combination therapy for cancer.
Asunto(s)
Grafito , Nanopartículas , Humanos , Animales , Ratones , Fototerapia , Células HeLa , Doxorrubicina/farmacología , Línea Celular TumoralRESUMEN
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.