Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(3): 521-525, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306979

RESUMEN

High-quality predicted structures enable structure-based approaches to an expanding number of drug discovery programs. We propose that by utilizing free energy perturbation (FEP), predicted structures can be confidently employed to achieve drug design goals. We use structure-based modeling of hERG inhibition to illustrate this value of FEP.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Termodinámica , Entropía
2.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30902636

RESUMEN

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Asunto(s)
Antígenos CD/química , Butirofilinas/química , Activación de Linfocitos , Organofosfatos/metabolismo , Subgrupos de Linfocitos T/inmunología , Antígenos CD/metabolismo , Sitios de Unión , Butirofilinas/metabolismo , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Inmunoterapia , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Procesamiento Proteico-Postraduccional , Receptores de Antígenos de Linfocitos T gamma-delta , Análisis de la Célula Individual , Relación Estructura-Actividad , Subgrupos de Linfocitos T/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(41): e2304089120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792512

RESUMEN

The serotonin transporter (SERT) tightly regulates synaptic serotonin levels and has been the primary target of antidepressants. Binding of inhibitors to the allosteric site of human SERT (hSERT) impedes the dissociation of antidepressants bound at the central site and may enhance the efficacy of such antidepressants to potentially reduce their dosage and side effects. Here, we report the identification of a series of high-affinity allosteric inhibitors of hSERT in a unique scaffold, with the lead compound, Lu AF88273 (3-(1-(2-(1H-indol-3-yl)ethyl)piperidin-4-yl)-6-chloro-1H-indole), having 2.1 nM allosteric potency in inhibiting imipramine dissociation. In addition, we find that Lu AF88273 also inhibits serotonin transport in a noncompetitive manner. The binding pose of Lu AF88273 in the allosteric site of hSERT is determined with extensive molecular dynamics simulations and rigorous absolute binding free energy perturbation (FEP) calculations, which show that a part of the compound occupies a dynamically formed small cavity. The predicted binding location and pose are validated by site-directed mutagenesis and can explain much of the structure-activity relationship of these inhibitors using the relative binding FEP calculations. Together, our findings provide a promising lead compound and the structural basis for the development of allosteric drugs targeting hSERT. Further, they demonstrate that the divergent allosteric sites of neurotransmitter transporters can be selectively targeted.


Asunto(s)
Citalopram , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Antidepresivos/farmacología , Citalopram/química , Citalopram/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
4.
J Chem Inf Model ; 63(10): 3171-3185, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37167486

RESUMEN

In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free-energy perturbation (ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermodynamics and could, in principle, greatly improve the hit rates in virtual screening. In this work, we describe an implementation of an accurate and reliable ABFEP method in FEP+. We validated the ABFEP method on eight congeneric compound series binding to eight protein receptors including both neutral and charged ligands. For ligands with net charges, the alchemical ion approach is adopted to avoid artifacts in electrostatic potential energy calculations. The calculated binding free energies correlate with experimental results with a weighted average of R2 = 0.55 for the entire dataset. We also observe an overall root-mean-square error (RMSE) of 1.1 kcal/mol after shifting the zero-point of the simulation data to match the average experimental values. Through ABFEP calculations using apo versus holo protein structures, we demonstrated that the protein conformational and protonation state changes between the apo and holo proteins are the main physical factors contributing to the protein reorganization free energy manifested by the overestimation of raw ABFEP calculated binding free energies using the holo structures of the proteins. Furthermore, we performed ABFEP calculations in three virtual screening applications for hit enrichment. ABFEP greatly improves the hit rates as compared to docking scores or other methods like metadynamics. The good performance of ABFEP in rank ordering compounds demonstrated in this work confirms it as a useful tool to improve the hit rates in virtual screening, thus facilitating hit discovery.


Asunto(s)
Proteínas , Ligandos , Unión Proteica , Entropía , Proteínas/química , Termodinámica
5.
J Chem Inf Model ; 62(3): 703-717, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35061383

RESUMEN

The accurate prediction of binding affinity between protein and small molecules with free energy methods, particularly the difference in binding affinities via relative binding free energy calculations, has undergone a dramatic increase in use and impact over recent years. The improvements in methodology, hardware, and implementation can deliver results with less than 1 kcal/mol mean unsigned error between calculation and experiment. This is a remarkable achievement and beckons some reflection on the significance of calculation approaching the accuracy of experiment. In this article, we describe a statistical analysis of the implications of variance (standard deviation) of both experimental and calculated binding affinities with respect to the unknown true binding affinity. We reveal that plausible ratios of standard deviation in experiment and calculation can lead to unexpected outcomes for assessing the performance of predictions. The work extends beyond the case of binding free energies to other affinity or property prediction methods.


Asunto(s)
Proteínas , Entropía , Ligandos , Unión Proteica , Proteínas/química , Termodinámica
6.
J Chem Inf Model ; 61(3): 1412-1426, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33661005

RESUMEN

Drug design with patient centricity for ease of administration and pill burden requires robust understanding of the impact of chemical modifications on relevant physicochemical properties early in lead optimization. To this end, we have developed a physics-based ensemble approach to predict aqueous thermodynamic crystalline solubility, with a 2D chemical structure as the input. Predictions for the bromodomain and extraterminal domain (BET) inhibitor series show very close match (0.5 log unit) with measured thermodynamic solubility for cases with low crystal anisotropy and good match (1 log unit) for high anisotropy structures. The importance of thermodynamic solubility is clearly demonstrated by up to a 4 log unit drop in solubility compared to kinetic (amorphous) solubility in some cases and implications thereof, for instance on human dose. We have also demonstrated that incorporating predicted crystal structures in thermodynamic solubility prediction is necessary to differentiate (up to 4 log unit) between solubility of molecules within the series. Finally, our physics-based ensemble approach provides valuable structural insights into the origins of 3-D conformational landscapes, crystal polymorphism, and anisotropy that can be leveraged for both drug design and development.


Asunto(s)
Física , Agua , Humanos , Conformación Molecular , Solubilidad , Termodinámica
7.
Biophys J ; 119(1): 115-127, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32533939

RESUMEN

Accurately predicting the protein thermostability changes upon single point mutations in silico is a challenge that has implications for understanding diseases as well as industrial applications of protein engineering. Free energy perturbation (FEP) has been applied to predict the effect of single point mutations on protein stability for over 40 years and emerged as a potentially reliable prediction method with reasonable throughput. However, applications of FEP in protein stability calculations in industrial settings have been hindered by a number of limitations, including the inability to model mutations to and from prolines in which the bonded topology of the backbone is modified and the complexity in modeling charge-changing mutations. In this study, we have extended the FEP+ protocol to enable the accurate modeling of the effects on protein stability from proline mutations and from charge-changing mutations. We also evaluated the influence of the unfolded model in the stability calculations using increasingly longer peptides with native sequence and conformations. With the abovementioned improvements, the accuracy of FEP predictions of protein stability over a data set of 87 mutations on five different proteins has drastically improved compared with previous studies, with a mean unsigned error of 0.86 kcal/mol and root mean square error of 1.11 kcal/mol, comparable with the accuracy of previously published state-of-the-art small-molecule relative binding affinity calculations, which have been shown to be capable of driving discovery projects.


Asunto(s)
Mutación Puntual , Proteínas , Entropía , Péptidos , Estabilidad Proteica , Proteínas/genética , Termodinámica
8.
J Chem Inf Model ; 60(12): 6211-6227, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33119284

RESUMEN

Alchemical free-energy calculations are now widely used to drive or maintain potency in small-molecule lead optimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free-energy calculations to drive optimization of compound selectivity among two similar targets has been relatively unexplored in published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess the accuracy with which selectivity can be predicted in the context of small-molecule kinase inhibitors, considering the very similar binding sites of human kinases CDK2 and CDK9 as well as another series of ligands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using a Bayesian analysis approach, we separate systematic from statistical errors and quantify the correlation in systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation in systematic errors suggests that free-energy calculations can have significant impact in aiding chemists in achieving selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic error suggests that fortuitous cancellation may even occur between systems that are not as closely related. In both cases, the correlation in systematic error suggests that longer simulations are beneficial to properly balance statistical error with systematic error to take full advantage of the increase in apparent free-energy calculation accuracy in selectivity prediction.


Asunto(s)
Diseño de Fármacos , Simulación de Dinámica Molecular , Teorema de Bayes , Sitios de Unión , Humanos , Ligandos , Unión Proteica , Termodinámica
9.
J Chem Inf Model ; 60(7): 3489-3498, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32539379

RESUMEN

A tremendous research and development effort was exerted toward combating chronic hepatitis C, ultimately leading to curative oral treatments, all of which are targeting viral proteins. Despite the advantage of numerous targets allowing for broad hepatitis C virus (HCV) genotype coverage, the only host target inhibitors that advanced into clinical development were Cyclosporin A based cyclophilin inhibitors. While cyclosporin-based molecules typically require a fermentation process, Gilead successfully pursued a fully synthetic, oral program based on Sanglifehrin A. The drug discovery process, though greatly helped by facile crystallography, was still hampered by the limitations in the accuracy of predictive computational methods for prioritizing compound ideas. Recent advances in accuracy and speed of free energy perturbation (FEP) methods, however, are attractive for prioritizing and derisking synthetically challenging molecules and potentially could have had a significant impact on the speed of the development of this program. Here in our simulated prospective study, the binding free energies of 26 macrocyclic cyclophilin inhibitors were blindly predicted using FEP+ to test this hypothesis. The predictions had a low mean unsigned error (MUE) (1.1 kcal/mol) and accurately reproduced many design decisions from the program, suggesting that FEP+ has the potential to drive synthetic chemistry efforts by more accurately ranking compounds with nonintuitive structure-activity relationships (SARs).


Asunto(s)
Descubrimiento de Drogas , Entropía , Estudios Prospectivos , Relación Estructura-Actividad , Termodinámica
10.
J Chem Inf Model ; 59(9): 3955-3967, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31425654

RESUMEN

Covalent inhibitors have emerged as an important drug class in recent years, largely due to their many unique advantages as compared to noncovalent inhibitors, including longer duration of action, lower prolonged systemic exposure, higher potency, and selectivity. However, the potential off-target toxicity of covalent inhibitors, particularly of irreversible covalent inhibitors, represents a great challenge in covalent drug development. Therefore, accurate calculation of protein covalent inhibitor reaction kinetics to guide the design of selective inhibitors would greatly benefit covalent drug discovery efforts. In the present paper, we present a computational method to calculate the relative reaction kinetics between congeneric irreversible covalent inhibitors and their protein receptors. The method combines density functional theory calculations of the transition state barrier height of the rate-limiting step for reaction between the warhead of the inhibitor and a single protein residue, and molecular-mechanics-based free energy calculations to account for the interactions between the ligand in the transition state and the protein environment. The method was tested on four pharmaceutically interesting irreversible covalent binding systems involving 28 ligands; the mean unsigned error (MUE) of the relative reaction rate for all pairs of ligands between the predictions and experimental results for these tested systems is 0.79 log unit. This is to our knowledge the first time where the reaction kinetics of protein irreversible covalent inhibition have been directly calculated with physics-based free energy calculation methods and transition state theory. We anticipate the outstanding accuracy demonstrated here across a broad range of target classes will have a strong impact on the design of selective covalent inhibitors.


Asunto(s)
Modelos Moleculares , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Cinética , Unión Proteica , Proteínas/química
11.
Acc Chem Res ; 50(7): 1625-1632, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28677954

RESUMEN

A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates, is potentially transformative in enabling hard to drug targets to be attacked, and in facilitating the development of superior compounds, in various dimensions, for a wide range of targets. More effective integration of FEP+ calculations into the drug discovery process will ensure that the results are deployed in an optimal fashion for yielding the best possible compounds entering the clinic; this is where the greatest payoff is in the exploitation of computer driven design capabilities. A key conclusion from the work described is the surprisingly robust and accurate results that are attainable within the conventional classical simulation, fixed charge paradigm. No doubt there are individual cases that would benefit from a more sophisticated energy model or dynamical treatment, and properties other than protein-ligand binding energies may be more sensitive to these approximations. We conclude that an inflection point in the ability of MD simulations to impact drug discovery has now been attained, due to the confluence of hardware and software development along with the formulation of "good enough" theoretical methods and models.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular
12.
J Chem Phys ; 149(7): 072306, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134707

RESUMEN

A molecular-level understanding of the structure, dynamics, and reactivity of carbohydrates is fundamental to the understanding of a range of key biological processes. The six-membered pyranose ring, a central component of biological monosaccharides and carbohydrates, has many different puckering conformations, and the conformational free energy landscape of these biologically important monosaccharides remains elusive. The puckering conformations of monosaccharides are separated by high energy barriers, which pose a great challenge for the complete sampling of these important conformations and accurate modeling of these systems. While metadynamics or umbrella sampling methods have been used to study the conformational space of monosaccharides, these methods might be difficult to generalize to other complex ring systems with more degrees of freedom. In this paper, we introduce a new enhanced sampling method for the rapid sampling over high energy barriers that combines our previously developed enhanced sampling method REST (replica exchange with solute tempering) with a bond softening (BOS) scheme that makes a chemical bond in the ring weaker as one ascends the replica ladder. We call this new method replica exchange with solute tempering and bond softening (REST/BOS). We demonstrate the superior sampling efficiency of REST/BOS over other commonly used enhanced sampling methods, including temperature replica exchange method and REST. The conformational free energy landscape of four biologically important monosaccharides, namely, α-glucose, ß-glucose, ß-mannose, and ß-xylose, is studied using REST/BOS, and results are compared with previous experimental and theoretical studies.


Asunto(s)
Hexosas/química , Xilosa/química , Glucosa/química , Manosa/química , Conformación Molecular , Simulación de Dinámica Molecular , Estereoisomerismo
13.
J Am Chem Soc ; 137(7): 2695-703, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25625324

RESUMEN

Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.


Asunto(s)
Biología Computacional , Descubrimiento de Drogas , Proteínas/metabolismo , Diseño de Fármacos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas/química , Termodinámica
14.
J Chem Inf Model ; 55(4): 727-35, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25835054

RESUMEN

Our interest is relative binding free energy (RBFE) calculations based on molecular simulations. These are promising tools for lead optimization in drug discovery, computing changes in binding free energy due to modifications of a lead compound. However, in the "alchemical" framework for RBFE calculations, some types of mutations have the potential to introduce error into the computed binding free energies. Here we explore the magnitude of this error in several different model binding calculations. We find that some of the calculations involving ring breaking have significant errors, and these errors are especially large in bridged ring systems. Since the error is a function of ligand strain, which is unpredictable in advance, we believe that ring breaking should be avoided when possible.


Asunto(s)
Simulación de Dinámica Molecular , Estudios de Factibilidad , Humanos , Ibuprofeno/química , Ibuprofeno/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Termodinámica
15.
J Chem Inf Model ; 55(11): 2411-20, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26457994

RESUMEN

Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.


Asunto(s)
Diseño de Fármacos , Proteínas/metabolismo , Termodinámica , Animales , Proteínas Bacterianas/metabolismo , Humanos , Ligandos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Staphylococcus aureus/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(6): 1937-42, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308365

RESUMEN

We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein-ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.


Asunto(s)
Simulación por Computador , Proteínas/metabolismo , Acetamidas/metabolismo , Bacteriófago T4/enzimología , Benceno/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Termodinámica , Trombina/química , Trombina/metabolismo , Valina/metabolismo , Xilenos/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(4): 1326-30, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21205906

RESUMEN

Biological processes often depend on protein-ligand binding events, yet accurate calculation of the associated energetics remains as a significant challenge of central importance to structure-based drug design. Recently, we have proposed that the displacement of unfavorable waters by the ligand, replacing them with groups complementary to the protein surface, is the principal driving force for protein-ligand binding, and we have introduced the WaterMap method to account this effect. However, in spite of the adage "nature abhors vacuum," one can occasionally observe situations in which a portion of the receptor active site is so unfavorable for water molecules that a void is formed there. In this paper, we demonstrate that the presence of dry regions in the receptor has a nontrivial effect on ligand binding affinity, and suggest that such regions may represent a general motif for molecular recognition between the dry region in the receptor and the hydrophobic groups in the ligands. With the introduction of a term attributable to the occupation of the dry regions by ligand atoms, combined with the WaterMap calculation, we obtain excellent agreement with experiment for the prediction of relative binding affinities for a number of congeneric ligand series binding to the major urinary protein receptor. In addition, WaterMap when combined with the cavity contribution is more predictive than at least one specific implementation [Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130:2817-2831] of the popular MM-GBSA approach to binding affinity calculation.


Asunto(s)
Ligandos , Estructura Terciaria de Proteína , Proteínas/química , Agua/química , Algoritmos , Animales , Sitios de Unión , Unión Competitiva , Biología Computacional/métodos , Entropía , Cinética , Ratones , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Proteínas/metabolismo , Agua/metabolismo
18.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712280

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

19.
J Mol Biol ; 436(16): 168640, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844044

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how Protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

20.
J Chem Theory Comput ; 19(11): 3080-3090, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37219932

RESUMEN

Structure-based drug design frequently operates under the assumption that a single holo structure is relevant. However, a large number of crystallographic examples clearly show that multiple conformations are possible. In those cases, the protein reorganization free energy must be known to accurately predict binding free energies for ligands. Only then can the energetic preference among these multiple protein conformations be utilized to design ligands with stronger binding potency and selectivity. Here, we present a computational method to quantify these protein reorganization free energies. We test it on two retrospective drug design cases, Abl kinase and HSP90, and illustrate how alternative holo conformations can be derisked and lead to large boosts in affinity. This method will allow computer-aided drug design to better support complex protein targets.


Asunto(s)
Diseño de Fármacos , Proteínas HSP90 de Choque Térmico , Ligandos , Estudios Retrospectivos , Conformación Proteica , Unión Proteica , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA