Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Cell Mol Med ; 28(7): e18236, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509746

RESUMEN

A three-dimensional alginate-coated scaffold (GAIS) was constructed in the present study to showcase the multidifferentiation potential of peripheral blood mesenchymal stem cells (PBMSCs) and to investigate the role and mechanism by which Icariin (ICA)/stromal cell-derived factor (SDF-1α)/PBMSCs promote damaged articular repair. In addition, the ability of ICA, in combination with SDF-1α, to promote the migration and proliferation of stem cells was validated through the utilization of CCK-8 and migration experiments. The combination of ICA and SDF-1α inhibited the differentiation of PBMSCs into cartilage, as demonstrated by in vivo experiments and histological staining. Both PCR and western blot experiments showed that GAIS could upregulate the expression of particular genes in chondrocytes. In comparison to scaffolds devoid of alginate (G0), PBMSCs seeded into GAIS scaffolds exhibited a greater rate of proliferation, and the conditioned medium derived from scaffolds containing SDF-1α enhanced the capacity for cell migration. Moreover, after a 12-week treatment period, GAIS, when successfully transplanted into osteochondral defects of mice, was found to promote cartilage regeneration and repair. The findings, therefore, demonstrate that GAIS enhanced the in vitro capabilities of PBMSCs, including proliferation, migration, homing and chondrogenic differentiation. In addition, ICA and SDF-1α effectively collaborated to support cartilage formation in vivo. Thus, the ICA/SDF-1α/PBMSC-loaded biodegradable alginate-gelatin scaffolds showcase considerable potential for use in cartilage repair.


Asunto(s)
Quimiocina CXCL12 , Gelatina , Ratones , Animales , Quimiocina CXCL12/farmacología , Cartílago , Andamios del Tejido , Movimiento Celular
2.
J Transl Med ; 22(1): 695, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075441

RESUMEN

BACKGROUND: Although there has been some progress in the treatment of primary uveal melanoma (UVM), distant metastasis remains the leading cause of death in patients. Monitoring, staging, and treatment of metastatic disease have not yet reached consensus. Although more than half of metastatic tumors (62%) are diagnosed within five years after primary tumor treatment, the remainder are only detected in the following 25 years. The mechanisms of UVM metastasis and its impact on prognosis are not yet fully understood. METHODS: scRNA-seq data of UVM samples were obtained and processed, followed by cell type identification and characterization of macrophage subpopulations. High-dimensional weighted gene co-expression network analysis (HdWGCNA) was performed to identify key gene modules associated with metastatic protective macrophages (MPMφ) in primary samples, and functional analyses were conducted. Non-negative matrix factorization (NMF) clustering and immune cell infiltration analyses were performed using the MPMφ gene signatures. Machine learning models were developed using the identified metastatic protective macrophages related genes (MPMRGs) to distinguish primary from metastatic patients. A deep learning convolutional neural network (CNN) model was constructed based on MPMRGs and cell type associations. Lastly, a prognostic model was established using the MPMRGs and validated in independent cohorts. RESULTS: Single-cell RNA-seq analysis revealed a unique immune microenvironment landscape in primary samples compared to metastatic samples, with an enrichment of macrophage cells. Using HdWGCNA, MPMφ and marker genes were identified. Functional analysis showed an enrichment of genes related to antigen processing progress and immune response. Machine learning and deep learning models based on key genes showed significant effectiveness in distinguishing between primary and metastatic patients. The prognostic model based on key genes demonstrated substantial predictive value for the survival of UVM patients. CONCLUSION: Our study identified key macrophage subpopulations related to metastatic samples, which have a profound impact on shaping the tumor immune microenvironment. A prognostic model based on macrophage cell genes can be used to predict the prognosis of UVM patients.


Asunto(s)
Aprendizaje Profundo , Macrófagos , Melanoma , Metástasis de la Neoplasia , Análisis de la Célula Individual , Neoplasias de la Úvea , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Humanos , Melanoma/patología , Melanoma/genética , Melanoma/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Masculino
3.
Mol Med ; 27(1): 72, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238204

RESUMEN

BACKGROUND: Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. METHODS: In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. RESULTS: We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. CONCLUSIONS: Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF.


Asunto(s)
Apoptosis/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Pruebas de Función Cardíaca , Masculino , Ratones , Interferencia de ARN , Ultrasonografía
4.
Pharmazie ; 76(5): 195-201, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964992

RESUMEN

The effects of eight oral anti-coronavirus drugs (lopinavir, ritonavir, chloroquine, darunavir, ribavirin, arbidol, favipiravir, oseltamivir) on the metabolism of four specific glycosides (polydatin, geniposide, quercitrin, glycyrrhizin) and on the activities of three major glycosidases (ß-glucosidase, α-rhamnosidase, ß-glucuronidase) from gut microflora were explored in vitro and determined by LC-MS/MS. The metabolism of polydatin, geniposide, quercitrin and glycyrrhizin was significantly inhibited by one or several anti-coronavirus drugs of 100 µM around 1 h and 4 h (P<0.05), among which darunavir could strongly reduce the production of genipin (70.6% reduction), quercitin (80.6% reduction) and glycyrrhetinic acid (37.9% reduction), which may cause a high risk of herb-drug interactions (HDI). Additionally, chloroquine reduced the production of genipin and quercitin by more than 75% (P<0.05), whereas arbidol had no significant influence on the metabolism of polydatin, quercitrin and glycyrrhizin (P>0.05) so that its risk may be lower. The inhibition of darunavir on ß-glucosidase was relatively strong (IC50 = 193±23 µM), and the inhibition became weaker on ß-glucuronidase and α-rhamnosidase (IC50>500 µM). The consistency between gut microflora and glycosidase system indicated that the inhibition of darunavir on the activity of ß-glucosidase and ß-glucuronidase may be the main reason for affecting the metabolism of geniposide, glycyrrhizin and polydatin in gut microflora. However, for the inhibition of darunavir and chloroquine on the metabolism of quercetrin, there was no correlation between gut microflora and α-rhamnosidase system. Assessing the risk of HDI mediated by glycosidases in gut microflora may be conducive to the safety and efficacy of combining traditional herbal and Western medicine for the treatment of patients with Covid-19.


Asunto(s)
Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Microbioma Gastrointestinal , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Cloroquina/farmacología , Darunavir/farmacología , Humanos , Seguridad del Paciente , Preparaciones de Plantas/efectos adversos , Espectrometría de Masas en Tándem
5.
Cell Physiol Biochem ; 49(6): 2427-2442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261500

RESUMEN

BACKGROUND/AIMS: Both physiologic remodeling and pathologic regeneration of cartilage tissue rely upon chondrocyte functions and are benefited from factors that promote viability and inhibit apoptosis of the cell, and associated mechanisms. High level of reactive oxygen species (ROS) and proinflammatory cytokines activate apoptosis signaling and initiate cell death, which can be attenuated by antioxidants. This study examined the effect of catalase (CAT) on ROS and tumor necrosis factor-α (TNF-α)-induced apoptosis in human C28/I2 chondrocytes cultured in monolayer. METHODS: Chondrocytes were treated with diluted CAT in the presence or absence of TNF-α and compared to untreated cells. Levels of hydrogen peroxide (H2O2) and mitochondrial membrane potential (Δψm) were measured using fluorescent labeling, cell apoptosis was assayed by flow cytometry using Annexin V/propidium iodide (PI) staining, gene expression was detected by quantitative real time polymerase chain reaction (qRT-PCR) and the proteins were investigated by Western blotting. RESULTS: CAT effectively reduced the intracellular ROS caused by the monolayer culture system, enhanced the Δψm depending on the presence of TNF-α and promoted morphological features at sub-cellular level. CAT also attenuated the TNF-α-upregulated expression of factors/mediators of extrinsic cell death cascade and apoptotic caspases, ultimately resulted in promoted cellular viability. CONCLUSION: The anti-apoptotic effect of CAT on chondrocytes via scavenging ROS and suppressing TNF-α-induced cell apoptosis by TNF/TNF receptor (TNFR) mediated death signaling pathway and potentiate CAT as a complementary agent beneficial to cartilage remodeling and regeneration in vivo, and cell-based therapies of cartilage repair demanding viable cells expanded ex vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Catalasa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
6.
J Cell Mol Med ; 21(9): 1835-1847, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28244648

RESUMEN

Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT-PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2-α1, Acan and Sox9, the key Wnt signalling molecule ß-catenin and paracrine cytokine Cytl-1. The treatments using CYTL-1 protein significantly increased expression of Col2-α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell-based therapies for cartilage repair.


Asunto(s)
Benzofuranos/farmacología , Condrocitos/citología , Condrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Agrecanos/genética , Agrecanos/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/ultraestructura , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ácidos Nucleicos/biosíntesis , Conejos , Receptores de Citocinas/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Eur J Pharm Biopharm ; : 114521, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39383974

RESUMEN

Polysorbate 80 (PS80) is a non-ionic surfactant extensively utilized in biopharmaceutical formulations for stabilizing proteins. However, PS80 degradation has become a widespread concern throughout the industry over the past decade. In this work, the impact of most frequently employed pH/buffer systems on the stability of PS80 was assessed. PS80 degraded fastest in histidine buffer, followed by acetate and succinate buffers, whereas it remained stable in citrate, phosphate and tris buffers. When there was PS80 degradation, the extent of degradation was found to be pH-dependent. The predominant degradation pathway was oxidation mainly triggered by metal ions. The varying stability of PS80 across different pH/buffer systems was attributed to the role of buffer agents, which can either promote or inhibit the oxidation process through their interactions with metal ions. Specifically, buffers except histidine exhibited metal ion chelation similar to ethylenediaminetetraacetic acid (EDTA), which can suppress the oxidation of PS80, although the effectiveness of chelation varies to different extents. Furthermore, the binding capacity appeared stronger at higher pH in acetate and succinate buffers. Conversely, histidine was reported to form pro-oxidant complexes with metal ions to accelerate PS80 degradation, especially at higher pH levels. Our work for the first time offers a comprehensive understanding of PS80 oxidation in biopharmaceutical buffer systems. This provides a strong foundation for buffer and excipient selection in parenteral formulations.

8.
Asian J Pharm Sci ; 19(4): 100938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39253611

RESUMEN

Alzheimer's disease is a neurodegenerative disease induced by multiple interconnected mechanisms. Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-facet pathology. However, clinical translation of peptide drugs is greatly hampered by their low permeability into brain. Herein, a hybrid peptide HNSS is generated by merging two therapeutic peptides (SS31 and S-14 G Humanin (HNG)), using a different approach from the classical shuttle-therapeutic peptide conjugate design. HNSS demonstrated increased bio-permeability, with a 2-fold improvement in brain distribution over HNG, thanks to its structure mimicking the design of signal peptide-derived cell-penetrating peptides. HNSS efficiently alleviated mitochondrial dysfunction through the combined effects of mitochondrial targeting, ROS scavenging and p-STAT3 activation. Meanwhile, HNSS with increased Aß affinity greatly inhibited Aß oligomerization/fibrillation, and interrupted Aß interaction with neuron/microglia by reducing neuronal mitochondrial Aß deposition and promoting microglial phagocytosis of Aß. In 3× Tg-AD transgenic mice, HNSS treatment efficiently inhibited brain neuron loss and improved the cognitive performance. This work validates the rational fusion design-based strategy for bio-permeability improvement and efficacy amplification, providing a paradigm for developing therapeutic peptide candidates against neurodegenerative disease.

9.
Acta Pharm Sin B ; 14(3): 1380-1399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486986

RESUMEN

Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer's disease (AD) collectively culminate in neuronal deterioration. In the context of AD, autophagy dysfunction, a multi-link obstacle involving autophagy downregulation and lysosome defects in neurons/microglia is highly implicated in intra/extraneuronal pathological processes. Therefore, multidimensional autophagy regulation strategies co-manipulating "autophagy induction" and "lysosome degradation" in dual targets (neuron and microglia) are more reliable for AD treatment. Accordingly, we designed an RP-1 peptide-modified reactive oxygen species (ROS)-responsive micelles (RT-NM) loading rapamycin or gypenoside XVII. Guided by RP-1 peptide, the ligand of receptor for advanced glycation end products (RAGE), RT-NM efficiently targeted neurons and microglia in AD-affected region. This nano-combination therapy activated the whole autophagy-lysosome pathway by autophagy induction (rapamycin) and lysosome improvement (gypenoside XVII), thus enhancing autophagic degradation of neurotoxic aggregates and inflammasomes, and promoting Aß phagocytosis. Resultantly, it decreased aberrant protein burden, alleviated neuroinflammation, and eventually ameliorated memory defects in 3 × Tg-AD transgenic mice. Our research developed a multidimensional autophagy nano-regulator to boost the efficacy of autophagy-centered AD therapy.

10.
PeerJ ; 11: e15917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637163

RESUMEN

Icariin (ICA) is a typical flavonoid glycoside derived from epimedium plants. It has both anabolic and anti-catabolic effects to improve bone mineral density and reduce bone microstructural degradation. However, the effect and underlying mechanism of ICA on the proliferation and metabolism of chondrocyte and synthesis of extracellular matrix are still unclear. This study aimed to investigate the role and regulation of far upstream element binding protein 1 (FUBP1) in chondrocytes treated with ICA to maintain homeostasis and suppress inflammatory responses. In the study, the effect of ICA on chondrocytes with overexpressed or silenced FUBP1 was detected by the MTS and single-cell cloning methods. The expression of hypoxia-inducible factor-1/2α (HIF-1/2α), FUBP1, matrix metalloproteinase (MMP)9, SRY-box transcription factor 9 (SOX9), and type II collagen (Col2α) in ATDC5 cells, a mouse chondrogenic cell line, treated with ICA was evaluated by immunoblotting. Western blotting revealed 1 µM ICA to have the most significant effect on chondrocytes. Alcian blue staining and colony formation assays showed that the promoting effect of ICA was insignificant in FUBP1-knockdown cells (P > 0.05) but significantly enhanced in FUBP1-overexpressed cells (P < 0.05). Western blot results from FUBP1-knockdown cells treated with or without ICA showed no significant difference in the expression of FUBP1, HIF-1/2α, MMP9, SOX9, and Col2α proteins, whereas the same proteins showed increased expression in FUBP1-overexpressed chondrocytes; moreover, HIF-2α and MMP9 expression was significantly inhibited in FUBP1-knockdown chondrocytes (P < 0.05). In conclusion, as a bioactive monomer of traditional Chinese medicine, ICA is beneficial to chondrocytes.


Asunto(s)
Condrocitos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Metaloproteinasa 9 de la Matriz , Hipoxia
11.
Exp Ther Med ; 25(6): 247, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37153895

RESUMEN

K (lysine) acetyltransferase (KAT) 5, which is a member of the KAT family of enzymes, has been found to act as a regulatory factor in various types of cancer. However, the role of KAT5 in anaplastic thyroid carcinoma (ATC) and its underlying mechanism is still elusive. The expression levels of KAT5 and kinesin family member 11 (KIF11) in ATC cells were assessed utilizing reverse transcription-quantitative PCR and western blot analyses. The cell proliferative ability was assessed via Cell Counting Kit-8 assay and using 5-ethynyl-2'-deoxyuridine staining. Flow cytometry and western blot analyses were applied for the assessment of cell apoptosis. Cell autophagy was investigated by employing western blot analysis and immunofluorescence staining. In addition, the enrichment of histone H3 lysine 27 acetylation (H3K27ac) and RNA polymerase II (RNA pol II) was analyzed by chromatin immunoprecipitation assay. It was shown that KAT5 expression was markedly increased in ATC cells. KAT5 depletion suppressed the cell proliferative capability but promoted the induction of apoptosis and autophagy. In addition, the autophagy inhibitor 3-methyladenine reversed the effects of KAT5 deficiency on the proliferative and apoptotic activities of 8505C cells. With regard to the mechanism, it was found that KAT5 inhibited the expression of KIF11 by repressing the enrichment of H3K27ac and RNA pol II. Upregulation of KIF11 expression reversed the effects of KAT5 silencing on the proliferative activity, apoptosis and autophagy of 8505C cells. In conclusion, the results indicated that KAT5 induced autophagy and promoted apoptosis of ATC cells by targeting KIF11, which may provide a promising target for the treatment of ATC.

12.
Front Oncol ; 13: 1153353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056336

RESUMEN

Background: The relationship between cuproptosis and HCC is still in the exploratory stage. Long noncoding RNAs (lncRNAs) have recently been linked to the progression of hepatocellular carcinoma (HCC). However, the clinical significance of lncRNAs associated with cuproptosis remains unclear. Methods: Based on The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma (LIHC) dataset, we identified characteristic prognostic lncRNAs by univariate, LASSO, and multifactorial regression analysis, and constructed a prognostic signature of cuproptosis-related lncRNAs in HCC. The role of lncRNAs were identified through CCK-8, clone formation in Huh-7 cells with high expression of FDX1. Prognostic potential of the characteristic lncRNAs was evaluated in each of the two cohorts created by randomly dividing the TCGA cohort into a training cohort and a test cohort in a 1:1 ratio. Immune profiles in defined subgroups of cuproptosis-related lncRNA features as well as drug sensitivity were analyzed. Results: We constructed a multigene signature based on four characteristic prognostic lncRNAs (AL590705.3, LINC02870, KDM4A-AS1, MKLN1-AS). These four lncRNAs participated in the development of cuproptosis. HCC patients were classified into high-risk and low-risk groups based on the median value of the risk score. The receiver operating characteristic curve area under the curve values for 1-, 3-, and 5-year survival were 0.773, 0.728, and 0.647, respectively, for the training cohort, and 0.764, 0.671, and 0.662, respectively, for the test cohort. Univariate and multifactorial regression analyses indicated that this prognostic feature was an independent prognostic factor for HCC. Principal component analysis plots clearly distinguished between low- and high-risk patients in terms of their probability of survival. Furthermore, gene set enrichment analysis showed that a variety of processes associated with tumor proliferation and progression were enriched in the high-risk group compared with the low-risk group. Moreover, there were significant differences in the expression of immune cell subpopulations, immune checkpoint genes, and potential drug screening, which provided distinct therapeutic recommendations for individuals with various risks. Conclusions: We constructed a novel cuproptosis-associated lncRNA signature with a significant predictive value for the prognosis of patients with HCC. Cuproptosis-associated lncRNAs are associated with the tumor immune microenvironment of HCC and even the efficacy of tumor immunotherapy.

13.
Front Oncol ; 13: 1310290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250555

RESUMEN

Background: Parathyroid carcinoma is an infrequent neoplasm of the endocrine system, constituting roughly 0.5% to 5% of cases of primary hyperparathyroidism. The diagnosis of this condition presents a unique challenge for healthcare professionals. Case report: We present a case of a 77-year-old female patient who presented with a longstanding right-sided neck tumor. The Positron emission tomography-computed tomography (PET-CT) scan detected a substantial tumor situated at the inferior border of the thyroid gland. A surgical procedure was conducted, resulting in the total excision of the tumor. The diagnosis of parathyroid carcinoma was confirmed through pathological investigation. At the six-month follow-up, the patient exhibited favorable post-operative outcomes with no evidence of recurrence. Conclusion: The primary approaches for managing parathyroid carcinoma involve precise diagnosis and surgical removal. This case report provides confirmation that the implementation of rigorous treatment measures can yield a substantial improvement in the prognosis.

14.
Adv Healthc Mater ; 12(30): e2301861, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573475

RESUMEN

Resident microglia are key factors in mediating immunity against brain tumors, but the microglia in malignant glioma are functionally impaired. Little immunotherapy is explored to restore microglial function against glioma. Herein, oleanolic acid (OA) (microglia "restorer") and D PPA-1 peptide (immune checkpoint blockade) are integrated on a nano-immuno-synergist (D PAM@OA) to work coordinately. The self-assembled OA core is coated with macrophage membrane for efficient blood-brain barrier penetration and microglia targeting, on which D PPA-1 peptide is attached via acid-sensitive bonds for specific release in tumor microenvironment. With the enhanced accumulation of the dual drugs in their respective action sites, D PAM@OA effectively promotes the recruitment and activation of effector T cells by inhibiting aberrant activation of Signal transducer and activator of transcription (STAT-3) pathway in microglia, and assists activated effector T cells in killing tumor cells by blocking elevated immune checkpoint proteins in malignant glioma. Eventually, as adjuvant therapy, the rationally designed nano-immuno-synergist hinders malignant glioma progression and recurrence with or without temozolomide. The work demonstrates the feasibility of a nano-formulation for microglia-based immunotherapy, which may provide a new direction for the treatment of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Microglía/patología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Macrófagos/metabolismo , Péptidos/farmacología , Microambiente Tumoral
15.
J Control Release ; 355: 604-621, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738970

RESUMEN

Since the complex interactions of multiple mechanisms involved in Alzheimer's disease (AD) preclude the monotherapeutic approaches from clinical application, combination therapy has become an attractive strategy for AD treatment. However, to be emphasized, the realization of the edges of combination therapy greatly depends on the reasonable choice of targets and the rational design of combination scheme. Acknowledgedly, amyloid plaques and hyperphosphorylated tau (p-tau) are two main hallmarks in AD with close pathological correlations, implying the hopeful prospect of combined intervention in them for AD treatment. Herein, we developed the nano-combination system, neuron-targeting PEG-PLA nanoparticles (CT-NP) loading two peptide drugs H102, a ß-sheet breaker acting on Aß, and NAP, a microtubule stabilizer acting on p-tau. Compared with free peptide combination, nano-combination system partly aligned the in vivo behaviors of combined peptides and enhanced peptide accumulation in lesion neurons by the guidance of targeting peptide CGN and Tet1, facilitating the therapeutic performance of peptide combination. Further, to maximize the therapeutic potential of nano-combination system, the combination ratio and mode were screened by the quantitative evaluation with combination index and U test, respectively, in vitro and in vivo. The results showed that the separated-loading CT-NP at the combination molar ratio of 2:1 (H102:NAP), CT-NP/H102 + CT-NP/NAP(2:1), generated the strongest synergistic therapeutic effects on Aß, p-tau and their linkage, and effectually prevented neuroinflammation, reversed the neuronal damage and restored cognitive performance in 3 × Tg-AD transgenic mice. Our studies provide critical data on the effectiveness of nano-combination therapy simultaneously intervening in Aß and p-tau, confirming the promising application of nano-combination strategy in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Ratones , Animales , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Péptidos/uso terapéutico , Péptidos/farmacología , Ratones Transgénicos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
16.
Drug Deliv Transl Res ; 13(11): 2869-2884, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37204680

RESUMEN

Metastatic non-small cell lung cancer (NSCLC) is refractory with a very poor prognosis. Docetaxel (DTX) injection (Taxotere®) has been approved for the treatment of locally advanced or metastatic NSCLC. However, its clinical application is restricted by severe adverse effects and non-selective tissue distribution. In this study, we successfully developed DTX-loaded human serum albumin (HSA) nanoparticles (DNPs) with modified Nab technology, by introducing medium-chain triglyceride (MCT) as a stabilizer. The optimized formulation had a particle size of approximately 130 nm and a favorable stabilization time of more than 24 h. DNPs dissociated in circulation in a concentration-dependent manner and slowly released DTX. Compared with DTX injection, DNPs were more effectively taken up by NSCLC cells, thus exerting stronger inhibitory effects on their proliferation, adhesion, migration, and invasion. In addition, DNPs showed prolonged blood retention and increased tumor accumulation relative to DTX injection. Ultimately, DNPs produced more potent inhibitory effects on primary or metastatic tumor foci than DTX injections but caused markedly lower organ toxicity and hematotoxicity. Overall, these results support that DNPs hold great potential for the treatment of metastatic NSCLC in clinical.

17.
Front Endocrinol (Lausanne) ; 13: 873662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634504

RESUMEN

This study aimed to address the dilemma of low peripheral blood-derived mesenchymal stromal cell (PBMSC) activity and reduced phenotype in bone or cartilage tissue engineering. Rat PBMSCs (rPBMSCs) were obtained by density gradient centrifugation, and stromal cell characteristics were confirmed by flow cytometry (FCM) and multi-differentiation potential induction experiments. Cell growth curve, viability experiments, and clone formation experiments were performed by [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) and cell counting, and the cell cycle was confirmed by cell FCM. The proliferation signal pathway and stemness-related proteins were detected by molecular methods including Western blot and real-time polymerase chain reaction. CD73, CD90, and CD105 were highly expressed, and CD14, CD19, CD34, CD45, and HLA-DR were barely expressed in rPBMSCs. rPBMSCs possessed the potential to differentiate into chondrocytes, adipocytes, and osteoblasts under their respective induction conditions. Cell growth curve and viability experiments were performed under hypoxic conditions: 19% O2, 5% O2, and 1% O2. Specifically, 5% O2 accelerated the proliferation and expression of the stemness of PBMSCs. Cycle experiments proved that hypoxia promoted the cell transition from the G1 phase to the S phase. Molecular experiments confirmed that 5% O2 hypoxia significantly elevated the expressions of hypoxia-inducible factor 1α and ß-catenin and simultaneously the expressions of cycle-related genes including CyclinE/CDK2 and stemness-related genes including Nanog and SOX2. The appropriate concentration of hypoxia (i.e., 5% O2) enhanced the proliferation and stemness of rPBMSCs and increased the multidirectional differentiation potential of stromal cells. The proposed culture method could improve the viability and maintain the phenotype of rPBMSCs in cartilage or bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Adipocitos , Animales , Diferenciación Celular , Proliferación Celular , Hipoxia/metabolismo , Ratas
18.
Ann Transl Med ; 10(10): 610, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35722390

RESUMEN

Background and Objective: Cartilage defects and degeneration have a major impact on daily mobility and quality of life for millions of people worldwide. As the most effective seed cells for tissue engineering applications in regenerative medicine, mesenchymal stem cells (MSCs) are pluripotent cells with mesoderm and neural crest origin. The combination of biomaterial scaffolds with stem cells and drugs for cartilage damage repair has brought much hope to the medical field. Methods: We searched and compared the literature on cartilage damage repaired by stem cells through PubMed and Web of Science method, this review summarizes the research progress of mesenchymal stem cells from various tissue sources in repairing articular cartilage injury. Key Content and Findings: We found that peripheral blood, bone marrow, umbilical cord blood, adipose tissue, and umbilical cord are classic stem cell sources. Stem cells can be stimulated by various growth factors, recombinant proteins, or important monomers to generate cartilage in vitro. At the same time, MSCs obtained from various sources can secrete different growth factors to further regulate their own cartilage formation. These stem cells may promote the cartilage damage repair by promoting differentiation and fighting inflammation. Conclusions: This review summarizes and discusses the advantages and disadvantages of the ability of MSCs from different sources to treat cartilage injury, and provides help and identification for the subsequent in-depth research and preclinical application of various MSCs.

19.
Stem Cell Res Ther ; 13(1): 445, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056383

RESUMEN

BACKGROUND: Cardiac-resident mesenchymal stem cells (cMSCs) can exhibit fibrotic, proinflammatory, and proangiogenic phenotype in response to myocardial ischemia (Isch). How their phenotypic fate decisions are determined remains poorly understood. Here, we demonstrate that the cooperation of Oct4 and c-Myc in cMSCs creates a preferable mesenchymal-to-endothelial transition (MEndoT) to promote angiogenesis and consequent myocardial repair. METHODS: We collected MSCs from cardiac and peripheral blood of rat with left ventricular Isch (LV Isch) 30 days after myocardial infarction (MI) or sham operation. After a comparison of characterization between cMSCs and peripheral blood MSCs (pbMSCs), we conducted transcriptome analysis and RNA sequencing of cMSCs. Using loss/gain-of-function approaches to understand the cooperation of c-Myc and Oct4 on MEndoT of cMSCs under hypoxic condition, we explored the mechanisms through transcriptome and functional experiment, and chromatin immunoprecipitation. Next, we transplanted male cMSCs with overexpression or inhibition of c-Myc/Oct4 into the infarcted myocardium of female rats and evaluated infarct size, cell retention, inflammation, remodeling, and function after 30 days. RESULTS: LV Isch switched cMSCs toward both inflammatory and proangiogenic phenotypes, with increased secretion of inflammatory cytokines as well as decreased expression of proangiogenic factors. The effect of LV Isch on pbMSCs was less remarkable. Gene expression heatmap showed imbalance in expression of Oct4 and c-Myc regulating genes associated with remodeling of cMSCs. We provided evidence that cMSCs-specific c-Myc- versus Oct4-overexpression showed divergent genomic signatures, and their corresponding target genes play an important role in regulating cMSCs phenotypic changes. In particular, Oct4 accelerated angiogenesis induced by c-Myc overexpression in cMSCs and inhibited their phenotypic transition into inflammatory cells and fibroblast. Mechanistically, exogenous Oct4 caused c-Myc to translocate from the nucleus to the cytoplasm and activated some of its target signalings including VEGF signaling. Although transplantation of cMSCs alone did not improve LV remodeling and function, cMSCs co-transfected with c-Myc and Oct4 promoted a more positive effect in their survival and reparative properties, increased animal survival, reduced infarct size, decreased scar thickness, inhibited LV remodeling, and improved heart function 30 days after MI. Significantly, Oct4 promoted MEndoT ("Rescue me" signal) of cMSCs after both c-Myc stimulation in vitro and transplantation into the infarcted heart. CONCLUSIONS: Myocardial Isch drives resident cMSCs toward multiple phenotypes. Oct4 interacts with c-Myc to promote MEndoT capacity of cMSCs and improve their survival and reparative effects through upregulation of angiogenesis-related signaling pathways. These findings may identify novel targets for stem cell therapy.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Infarto del Miocardio , Isquemia Miocárdica , Animales , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Neovascularización Fisiológica/fisiología , Ratas
20.
ACS Sens ; 7(9): 2634-2644, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35984967

RESUMEN

Ever-increasing quality of life demands low-power and reliable gas-sensing technology for point-of-care monitoring of human health by relevant breath biomarkers. However, precise identification is rather challenging due to the relatively small concentration and an abundance of interferents. Herein, a breath sensor that can detect ppb-level ammonia is constructed based on a soft-hard interface design of biocompatible seaweed fabric and nanosheet-assembled bismuth oxide architectures after undergoing heat treatment. Benefiting from abundant defective sites and surface chemical state changes, the flexible sensor can work at room temperature and exhibits superior characteristics for ammonia detection, including ultrahigh response (1296), short response/recovery time (12/6 s), small detection limit (117 ppb), and remarkable anti-interference, even after repetitive mechanical bending and long-term fatigue. Furthermore, the flexible sensor demonstrates a noticeable response to the exhaled breath of a patient with Helicobacter pylori infection. After connecting the sensor with a green-light-emitting diode (LED) in the circuit, an alarm system successfully warns about ammonia levels based on the brightness of the LED. This work provides a potential strategy for wide-range ammonia detection and opens new applications in predictive and personalized healthcare platforms for noninvasive medical diagnosis.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Algas Marinas , Amoníaco , Biomarcadores , Pruebas Respiratorias , Humanos , Óxidos , Porosidad , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA