Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 154: 109878, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245186

RESUMEN

The fourfinger threadfin fish (Eleutheronema tetradactylum) is an economically significant species renowned for its ability to adapt to varying salinity environments, with gills serving as their primary organs for osmoregulation and immune defense. Previous studies focused on tissue and morphological levels, whereas ignored the cellular heterogeneity and the crucial gene information related to core cell subsets within E. tetradactylum gills. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to analyze the gills of E. tetradactylum, characterizing 16 distinct cell types and identifying unique gene markers and enriched functions associated within each cell type. Additionally, we subdivided ionocyte cells into four distinct subpopulations for the first time in E. tetradactylum gills. By employing weighted gene co-expression network analysis (WGCNA), we further investigated the cellular heterogeneity and specific response mechanisms to salinity fluctuant. Our findings revealed the intricate osmoregulation and immune functions of gill cells, highlighting their crucial roles in maintaining homeostasis and adapting to fluctuating salinity levels. This comprehensive cell-type atlas provides valuable insights into the species adaptive strategies, contributing to the conservation and management of this commercially significant fish as well as other euryhaline species.

2.
Environ Sci Technol ; 58(42): 18578-18588, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39382953

RESUMEN

Growing evidence suggests that the imbalance of Cu leads to multiorgan diseases or other adverse effects, but the underlying mechanisms remain largely unknown. Herein, we used zebrafish to uncover the mystery of organ heterogeneous responses to Cu stress and Cu(II)-dependent spine developmental injury in the early organogenesis stage. We first demonstrated that Cu(I) was distributed in the entire body, but high contents of Cu(II) were accumulated in the yolk sac and eye in normal zebrafish larvae. Cu exposure from birth to 144 hpf caused no obvious damage to Cu-metabolizing organs (liver and intestine), despite the elevated Cu(I) and Cu(II) levels. However, the spine was more sensitive to the Cu exposure. In the spine region, the Cu(I) level remained stable, whereas the level of Cu(II) significantly increased, which was highly associated with spine development injury. A significant negative correlation between Cu(II) and the spine-related parameters was identified. Moreover, cuproptosis caused spine development deformation during the early embryogenesis stage. Spine-related pathways such as somitegenesis significantly changed in the early embryogenesis period, and 5 spine-related pathways were significantly altered in the larval stage at 96 hpf. Our study suggested that Cu stress induced organ heterogeneous Cu imbalance and Cu(II)-dependent spine development injury in zebrafish.


Asunto(s)
Cobre , Columna Vertebral , Pez Cebra , Animales , Cobre/toxicidad , Larva
3.
Environ Sci Technol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028927

RESUMEN

The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.

4.
Environ Sci Technol ; 58(36): 16142-16152, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39194316

RESUMEN

Most studies on Cu toxicity relied on indirect physicochemical parameters to predict Cu toxicity resulting from adverse impacts. This study presents a systematic and intuitive picture of Cu toxicity induced by exogenous acidification in phytoplankton Chlamydomonas reinhardtii. We first showed that acidification reduced the algal resistance to environmental Cu stress with a decreased growth rate and increased Cu bioaccumulation. To further investigate this phenomenon, we employed specific fluorescent probes to visualize the intracellular labile Cu pools in different algal cells. Our findings indicated that acidification disrupted the intracellular labile Cu trafficking, leading to a significant increase in labile Cu(I) pools. At the molecular level, Cu toxicity resulted in the inhibition of the Cu(I) import system and activation of the Cu(I) export system in acidic algal cells, likely a response to the imbalance in intracellular labile Cu trafficking. Subcellular analysis revealed that Cu toxicity induced extensive mitochondrial dysfunction and impacted the biogenesis and assembly of the respiratory chain complex in acidic algal cells. Concurrently, we proposed that the activation of polyP synthesis could potentially regulate disrupted intracellular labile Cu trafficking. Our study offers an intuitive, multilevel perspective on the origins and impacts of Cu toxicity in living organisms, providing valuable insights on metal toxicity.


Asunto(s)
Cobre , Mitocondrias , Fitoplancton , Cobre/toxicidad , Fitoplancton/efectos de los fármacos , Fitoplancton/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efectos de los fármacos
5.
Environ Sci Technol ; 58(3): 1484-1494, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198516

RESUMEN

The environmental impact of sunscreen is a growing concern, yet the combined effects of its components on marine animals are poorly understood. In this study, we investigated the combined effects of sunscreen-extracted zinc oxide nanoparticles (nZnO) and microplastics (MPs) on the development of barnacle larvae, focusing on the different roles played by primary microplastics (PMPs) and secondary microplastics (SMPs) generated through the phototransformation of PMPs. Our findings revealed that a lower concentration of nZnO (50 µg/L) enhanced molting and eye development in barnacle larvae, while a higher concentration (500 µg/L) inhibited larval growth. Co-exposure to PMPs had no significant effect on larval development, whereas SMPs mitigated the impact of nZnO by restricting the in vivo transformation to ionic Zn. Accumulated SMPs reduced gut dissolution of nZnO by up to 40%, lowering gut acidity by 85% and buffering the in vivo dissolution of nZnO. We further identified a rough-surfaced Si-5 fragment in SMPs that damaged larval guts, resulting in decreased acidity. Another Si-32 resisted phototransformation and had no discernible effects. Our study presented compelling evidence of the impacts of SMPs on the bioeffect of nZnO, highlighting the complex interactions between sunscreen components and their combined effects on marine organisms.


Asunto(s)
Nanopartículas , Thoracica , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Microplásticos , Plásticos , Larva , Protectores Solares
6.
Environ Sci Technol ; 58(13): 5974-5986, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38512049

RESUMEN

Fish gills are highly sensitive organs for microplastic (MP) and nanoplastic (NP) invasions, but the cellular heterogeneity of fish gills to MPs and NPs remains largely unknown. We employed single-cell RNA sequencing to investigate the responses of individual cell populations in tilapia Oreochromis niloticus gills to MP and NP exposure at an environmentally relevant concentration. Based on the detected differentially expressed gene (DEG) numbers, the most affected immune cells by MP exposure were macrophages, while the stimulus of NPs primarily targeted T cells. In response to MPs and NPs, H+-ATPase-rich cells exhibited distinct changes as compared with Na+/K+-ATPase-rich cells and pavement cells. Fibroblasts were identified as a potential sensitive cell-type biomarker for MP interaction with O. niloticus gills, as evidenced by the largely reduced cell counts and the mostly detected DEGs among the 12 identified cell populations. The most MP-sensitive fibroblast subpopulation in O. niloticus gills was lipofibroblasts. Cell-cell communications between fibroblasts and H+-ATPase-rich cells, neurons, macrophages, neuroepithelial cells, and Na+/K+-ATPase-rich cells in O. niloticus gills were significantly inhibited by MP exposure. Collectively, our study demonstrated the cellular heterogeneity of O. niloticus gills to MPs and NPs and provided sensitive markers for their toxicological mechanisms at single-cell resolution.


Asunto(s)
Microplásticos , Plásticos , Animales , Microplásticos/toxicidad , Branquias , ATPasas de Translocación de Protón , Análisis de Secuencia de ARN
7.
Environ Sci Technol ; 58(12): 5255-5266, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38471003

RESUMEN

The labile metal pool involved in intracellular trafficking and homeostasis is the portion susceptible to environmental stress. Herein, we visualized the different intracellular distributions of labile Cu(I) and Cu(II) pools in the alga Chlamydomonas reinhardtii. We first demonstrated that labile Cu(I) predominantly accumulated in the granules within the cytoplasmic matrix, whereas the labile Cu(II) pool primarily localized in the pyrenoid and chloroplast. The cell cycle played an integral role in balancing the labile Cu(I)/Cu(II) pools. Specifically, the labile Cu(II) pool primarily accumulated during the SM phase following cell division, while the labile Cu(I) pool dynamically changed during the G phase as cell size increased. Notably, the labile Cu(II) pool in algae at the SM stage exhibited heightened sensitivity to environmental Cu stress. Exogenous Cu stress disrupted the intracellular labile Cu(I)/Cu(II) cycle and balance, causing a shift toward the labile Cu(II) pool. Our proteomic analysis further identified a putative cupric reductase, potentially capable of reducing Cu(II) to Cu(I), and four putative multicopper oxidases, potentially capable of oxidizing Cu(I) to Cu(II), which may be involved in the conversion between the labile Cu(I) pool and labile Cu(II) pool. Our study elucidated a dynamic cycle of the intracellular labile Cu(I)/Cu(II) pools, which were accessible and responsive to environmental changes.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/metabolismo , Proteómica , Oxidorreductasas/metabolismo
8.
Environ Sci Technol ; 58(37): 16269-16281, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39213526

RESUMEN

Microplastics (MPs) as emerging contaminants are widely present in the environment and are ubiquitously ingested and accumulated by aquatic organisms. MPs may be quickly eliminated after a brief retention in aquatic animals (such as the digestive tract); thus, understanding the damage caused by MPs during this process and whether the damage can be recovered is important. Here, we proposed the use of visible light imaging to track MPs combined with near-infrared (NIR) imaging to reveal the in situ impacts of MPs. The combination of these two techniques allows for the simultaneous investigation of the localization and functionality of MPs in vivo. We investigated the effects of two types of MPs on zebrafish, microplastic fibers (MFs) and microplastic beads (MBs). The results showed that MPs larger than 10 µm primarily accumulated in the intestines of zebrafish. Both MFs and MBs disrupted the redox balance of the intestine, and the location of the damage was consistent with the heterogeneous accumulation of MPs. MFs caused greater and more difficult-to-recover damage compared to MBs, which was closely related to the slower elimination rate of MFs. Our study highlights the importance of capturing the dynamic toxicological effects of MPs on organisms. Fibrous MPs and spherical MPs clearly had distinct effects on their toxicokinetics and toxicodynamics in fish.


Asunto(s)
Microplásticos , Pez Cebra , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Environ Sci Technol ; 58(10): 4558-4570, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408313

RESUMEN

Calcium is a highly demanded metal, and its transport across the intestine of Daphnia magna remains a significant unresolved question. Due to technical constraints, the visualization of the kinetic process of Ca passage through D. magna has been challenging. Here, we developed the second near-infrared Ca sensor (NIR-II Ca) and conducted real-time in vivo imaging of Ca in daphnids with a high signal-to-noise ratio, deep tissue penetration, and minimal damage. Through the utilization of the NIR-II Ca sensor, we for the first time visualized and quantified the kinetic process of Ca passage in the intestine in real time. The results revealed that trophically available Ca passed through the intestines in 24 h, whereas waterborne Ca required only 35 min. This rapid "flushing through" mechanism established waterborne Ca as the primary source of Ca absorption. However, environmental stressors such as water acidification and cadmium significantly delayed the Ca passage and absorption. The development of NIR imaging and sensors allows for real-time dynamic visualization of contaminants/nutrients in organisms and holds great potential as a powerful tool for future studies into material kinetic processes in living animals.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Animales , Calcio , Daphnia magna , Daphnia , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
10.
Environ Sci Technol ; 58(1): 780-794, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38118133

RESUMEN

Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.


Asunto(s)
Ecosistema , Microbiota , Humanos , Efectos Antropogénicos , Sedimentos Geológicos/análisis , Biota , Ríos , Estuarios , Monitoreo del Ambiente
11.
Fish Shellfish Immunol ; 141: 109070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709178

RESUMEN

The physiological and immune functions of fish gills are largely recognized, but their following functional heterogeneity at the single cell scale has been rarely reported. Here, we performed single cell RNA sequencing (scRNA-seq) on the gills of tilapia fish Oreochromis niloticus. We identified a total of 12 cell populations and analyzed their functional heterogeneity. To investigate the physiological function of O. niloticus gills, expression patterns of genes encoding ion transporters were selected from the identified H+-ATPase-rich cells (HR cells), Na+/K+-ATPase-rich cells (NaR cells), and pavement cells. Specific enrichment of ca4a, slc9a1a, and LOC100692482 in the HR cells of O. niloticus gills explained their functions in acid-base regulation. Genes encoding Ca2+ transporters, including atp2b1, LOC100696627, and LOC 100706765, were specifically expressed in the NaR cells. Pavement cells were presumably the main sites responsible for ammonia and urea transports in O. niloticus gills with specific enrichment of Rhbg and LOC100693008, respectively. The expression patterns of the four immune cell subtypes varied greatly, with B cells being enriched with the most immune-related GO terms. KEGG enrichment analysis showed that MAPK signaling pathway was the most enriched pathway among the four types of immune cells in O. niloticus gills. Our results are important in understanding the physiological and immune responses of fish gills at the cellular resolution.


Asunto(s)
Cíclidos , Tilapia , Animales , Tilapia/metabolismo , Cíclidos/genética , Branquias/metabolismo , Transcriptoma , Transducción de Señal
12.
Environ Sci Technol ; 57(1): 118-127, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36503235

RESUMEN

The common metal-organic framework (MOF) MIL-101(Cr)-NH2 has attracted considerable attention due to its great potential applications in the environmental field. Nevertheless, its behavior and fate in aquatic systems are unknown. This study quantified and visualized the interactions of MIL-101(Cr)-NH2 with the freshwater phytoplanktonic alga Chlamydomonas reinhardtii and its potential trophic transfer to zooplankton. The unicellular alga absorbed and accumulated the MOF by surface attachment, forming agglomerates and eventually cosettling out from water. Bioimaging revealed that MIL-101(Cr)-NH2 was internalized by the algal cells and mainly occurred in the pyrenoid. Without algae in a freshwater system, MIL-101(Cr)-NH2 was ingested by Daphnia magna, showing steadily increasing concentrations approaching 1-9% of dry body weight. Addition of algae substantially suppressed D. magna uptake of MIL-101(Cr)-NH2 by 63.8-97.9%. Such inhibition could be explained by the competitive uptake of MOF by the algae and the inductive effects of algal food on MOF elimination by D. magna. The MOF (≤1 mg/L) ingested by D. magna was centered in the gut regions, whereas large MOF or algae-MOF aggregates were adsorbed onto the carapace and appendages, including the antennae, at 10 mg/L. Overall, the algae were the major targets for MIL-101(Cr)-NH2, with nearly all algal cells settling out at 10 mg/L within 24 h. The possibility of trophic transfer of MIL-101(Cr)-NH2 to D. magna in aquatic systems with algae present was limited due to its low accumulation potential and short retention time in D. magna.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Animales , Estructuras Metalorgánicas/farmacología , Zooplancton , Agua Dulce , Daphnia
13.
Environ Sci Technol ; 57(14): 5611-5620, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995001

RESUMEN

Microplastics are emerging pollutants that have been widely reported in aquatic ecosystems. Based on the analysis of environmentally relevant concentrations of microplastics in global freshwater systems, herein, we employed aggregated-induced emission (AIE) microplastic fluorogens and imaged and quantified the bioaccumulation of differentially charged micro- (20 µm)/nano- (200 nm) plastics (MNPs) in zooplankton Daphnia magna. We found that all particles of different sizes and charges were readily ingested, especially larger-sized and positively charged MNPs, with over 50% of the ingested particles accumulating in the gut. Bioaccumulation of MNPs reached 50% of steady-state condition within 1 h. The presence of algae inhibited the ingestion and depuration of MNPs. To further demonstrate the effects of such accumulation on gut health, we further applied the AIE probes for visualizing the pH and esterase in the digestive tract, as well as the gut inflammation. An accumulation of MNPs in D. magna significantly and rapidly induced the acidification of gut pH while inducing esterase activity. The NPs apparently induced gut inflammation in contrast to the MPs, demonstrating the size-dependent effects on oxidative stress. Our results highlighted that MNP exposure at environmentally relevant concentrations perturbed the microenvironments of zooplankton guts, which may significantly affect their digestion and assimilation of food materials as well as contaminant uptake.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Plásticos/análisis , Microplásticos/toxicidad , Daphnia/fisiología , Zooplancton , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 57(49): 20761-20772, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029324

RESUMEN

Nano- and microplastics (NMPs) are now prevalent in the marine environment. This study quantified the uptake and depuration kinetics of spherical polystyrene NMPs of different particle sizes (200 nm/30 µm) and functional groups (-NH2/-COOH) in a temperate calanoid copepod Calanus sinicus (C. sinicus), which exhibited rhythmic feeding patterns in natural environments. Aggregated-induced emission (AIE) fluorescent probes were employed to track and quantify the kinetics of NMPs with excellent photostability and biocompatibility. The results showed that C. sinicus consumed all NMPs types, with preference of NMPs to small size and amino group. Increased diatom concentrations also inhibited the bioaccumulation of NMPs. Influenced by rhythmic behavior, the bioaccumulation of NMPs by C. sinicus was nonstationary during the 6 h uptake phase. After 1-3 h of rapid uptake, the body burden peaked and then slowly declined. During the 3 h depuration phase, C. sinicus rapidly and efficiently removed NMPs with a mean half-life of only 0.23 h. To further quantify the body burden of C. sinicus under the influence of rhythmic feeding behavior, a biokinetic model was established, and the Markov chain Monte Carlo method was used to estimate the parameter distribution. Our results highlighted that copepods exhibited unique rhythmic feeding behavior under environmentally relevant concentrations of NMPs exposure, which may influence the bioaccumulation, trophic transfer, and environmental fate of NMPs.


Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Poliestirenos , Conducta Alimentaria , Colorantes , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Technol ; 57(48): 20219-20227, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37955256

RESUMEN

Copper (Cu) is hyperaccumulated in oyster hemocytes and is an essential trace metal indispensable for diverse innate immune functions. However, the roles of Cu in oyster immune defense are still unclear. In this study, Cu exposure enhanced the phagocytosis of zymosan by increasing the number and length of filopodia, as well as mitochondrial ROS (mitoROS) production mainly in granulocytes, followed by semigranulocytes and agranulocytes. The intracellular calcium level increased to promote the phagosome-lysosome fusion after Cu exposure. The enhancement of phagosomal acidification and mitochondrion-phagosome juxtaposition were also found in granulocytes after Cu exposure. These results indicated that Cu could regulate the phagolysosomal system to enhance the antimicrobial ability of oyster hemocytes with the assistance of mitoROS. Furthermore, Cu(I) and Cu(II) were predominately located in lysosomes, and degranulation may provide a mechanism for exposing Cu to bacteria to prevent their survival and proliferation. Specifically, we showed that the newly formed Cu(I) arising from lysosomal Cu(II) moved to lysosomes and mitochondria in activated hemocytes to induce strong immune responses. The ability of the transformation of Cu(I) from Cu(II) followed granulocytes > semigranlocytes > agranulocytes, indicating that granulocytes played important roles in immune functions of oysters. Our results provided new insights into the understanding of antimicrobial effects of Cu in oyster hemocytes.


Asunto(s)
Antiinfecciosos , Crassostrea , Animales , Hemocitos , Lisosomas , Fagocitosis , Antiinfecciosos/farmacología
16.
Environ Sci Technol ; 57(26): 9548-9558, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37338933

RESUMEN

Cu-based nanoparticles (NPs) have been increasingly fabricated, and different Cu species (i.e., Cu+ and Cu2+) of these NPs are tuned to achieve differential physicochemical properties. Although ion release is one of the major toxic mechanisms of Cu-based NPs, differences in cytotoxicity between released Cu(I) and Cu(II) ions are largely unknown. In this study, the A549 cells exhibited a lower tolerance to Cu(I) compared with Cu(II) accumulation. Bioimaging of labile Cu(I) indicated that the change of the Cu(I) level upon CuO and Cu2O exposure displayed different trends. We then developed a novel method to selectively release Cu(I) and Cu(II) ions within the cells by designing CuxS shells for Cu2O and CuO NPs, respectively. This method confirmed that Cu(I) and Cu(II) exhibited different cytotoxicity mechanisms. Specifically, excess Cu(I) induced cell death through mitochondrial fragmentation, which further led to apoptosis, whereas Cu(II) resulted in cell cycle arrest at the S phase and induced reactive oxygen species generation. Cu(II) also led to mitochondrial fusion, which was likely due to the influence of the cell cycle. Our study first uncovered the difference between the cytotoxicity mechanisms of Cu(I) and Cu(II), which could be greatly beneficial for the green fabrication of engineered Cu-based NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Nanopartículas/toxicidad , Cobre/toxicidad , Apoptosis , Mitocondrias/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo
17.
Environ Sci Technol ; 57(21): 8118-8129, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37192337

RESUMEN

Both zinc oxide nanoparticles (ZnO NPs) and microplastics (MPs) were extracted from one commercial sunscreen, while other ingredients were removed based on the "like dissolves like" principle. MPs were further extracted by acidic digestion of ZnO NPs using HCl and characterized as spherical particles of approximately 5 µm with layered sheets in an irregular shape on the surface. Although MPs were stable in the presence of simulated sunlight and water after 12 h of exposure, ZnO NPs promoted the photooxidation by producing hydroxyl radicals, with a 2.5-fold increase in the carbonyl index of the degree of surface oxidation. As a result of surface oxidation, spherical MPs were more soluble in water and fragmented to irregular shapes with sharp edges. We then compared the cytotoxicity of primary MPs and secondary MPs (25-200 mg/L) to the HaCaT cell line based on viability loss and subcellular damages. The cellular uptake of MPs transformed by ZnO NPs was enhanced by over 20%, and MPs caused higher cytotoxicity compared with the pristine ones, as evidenced by a 46% lower cell viability, 220% higher lysosomal accumulation, 69% higher cellular reactive oxygen species, 27% more mitochondrial loss, and 72% higher mitochondrial superoxide at 200 mg/L. Our study for the first time explored the activation of MPs by ZnO NPs derived from commercial products and revealed the high cytotoxicity caused by secondary MPs, providing new evidence on the effects of secondary MPs on human health.


Asunto(s)
Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Microplásticos , Plásticos , Fotólisis , Nanopartículas/toxicidad
18.
Environ Sci Technol ; 57(2): 1006-1016, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36598407

RESUMEN

Metal-oxide-based nanoparticles (MONPs) such as Cu2O NPs have attracted growing attention, but the potential discharges of MONPs have raised considerable concern of their environmental fate including their dissolution behavior. The impacts of morphology on MONP dissolution are largely uncertain due to the lack of in situ tracking techniques. In this study, we combined a series of in situ technologies including liquid-cell transmission electron microscopy and fluorescence probes to reveal the in situ dissolution process of Cu2O NPs in freshwater. Our results suggest that cubic Cu2O NPs exhibit a higher dissolution quantity compared with spherical NPs of the same surface area. The difference was mainly related to the crystal surface, while other factors such as particle size or aggregation status showed minor effects. Importantly, we demonstrated the simultaneous growth of new small NPs and the dissolution of pristine Cu2O NPs during the dissolution of Cu2O NPs. Cubic Cu2O NPs became much less soluble under O2-limited conditions, suggesting that O2 concentration largely affected the dependence of dissolution on the NP morphology. Our findings highlight the potential application of in situ techniques to track the environmental fates of MONPs, which would provide important information for assessing the ecological risks of engineered NPs.


Asunto(s)
Nanopartículas del Metal , Solubilidad , Nanopartículas del Metal/química , Óxidos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula
19.
Environ Sci Technol ; 57(29): 10532-10541, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37449839

RESUMEN

Interspecies sensitivity to the same chemical can be several orders of magnitude different. Quantifying toxicologically internal levels and toxicokinetic (TK) parameters is critical in elucidating the interspecies sensitivity. Herein, a two-compartmental TK model was constructed to characterize the uptake, distribution, and elimination kinetics toward interspecies sensitivity to an insecticide, imidacloprid. Imidacloprid exhibited the highest lethality to the insect Chironomus dilutus, followed by Lumbriculus variegatus, Hyalella azteca, and Daphnia magna. Interspecies sensitivity of imidacloprid to these invertebrates varied by ∼1000 folds based on water concentrations (LC50). Remarkably, the sensitivity variation decreased to ∼50 folds based on the internal residues (LR50), highlighting the critical role of TK in interspecies sensitivity. A one-compartmental TK model failed to simulate the bioaccumulation of imidacloprid in these invertebrates except for D. magna. Instead, a two-compartmental model successfully simulated the slow elimination of imidacloprid in the remaining three species by internally distinguishing the highly dynamic (C1) and toxicologically available (C2) fractions. We further showed that the species sensitivity of the invertebrates to imidacloprid was significantly related to C2, demonstrating that C2 was toxicologically available and responsible for the toxicity of imidacloprid. This mechanistic-based model bridged the internal distribution of organic contaminants in small invertebrates and the associated toxic potency.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Modelos Epidemiológicos , Toxicocinética , Invertebrados , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Nitrocompuestos/toxicidad , Contaminantes Químicos del Agua/toxicidad
20.
Environ Sci Technol ; 57(44): 17110-17122, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37851929

RESUMEN

Organic ultraviolet filters (OUVFs) are extensively released into aquatic environments, where they undergo complex phototransformation. However, there is little knowledge regarding their transformation products (TPs) and associated endocrine disruption potentials. In the present study, we characterized the chemical and toxicological profiles of TPs for two common OUVFs, oxybenzone (BP3) and ethylhexyl methoxycinnamate (EHMC), by photooxidation under environmentally relevant conditions. It is hypothesized that TPs of the tested OUVFs will show varied estrogenicity at different reaction times. High-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) identified 17 TPs of 7 m/z for BP-3 and 13 TPs of 8 m/z for EHMC at confidence levels ≤2. Five novel TPs of 2 m/z were reported for the first time with structure-diagnostic MS/MS spectra. Estrogenicity assessment using the MCF-7-luc cell line showed discrepant estrogenic activities exhibited by OUVF-TPs over time. Specifically, BP3-TPs exhibited significantly greater estrogenicity than the parent at several reaction times, whereas EHMC-TPs displayed fluctuating estrogenicity with a declining trend. Correlation analysis coupled with molecular docking simulations further suggested several TPs of BP3 as potential endocrine disruptive compounds. These findings underscore the necessity of considering mixtures during chemical testing and risk assessment and highlight the potentially greater risks associated with post-transformation cocktails.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Espectrometría de Masas en Tándem/métodos , Rayos Ultravioleta , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA