Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(21): 5357-5374.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34582788

RESUMEN

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Inmunoterapia , Macrófagos/enzimología , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Quimiocinas/metabolismo , Quimiotaxis , Modelos Animales de Enfermedad , Biblioteca de Genes , Humanos , Evasión Inmune , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteolisis , Especificidad por Sustrato , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/terapia
2.
Mol Cell ; 81(6): 1292-1308.e11, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33567269

RESUMEN

The ubiquitin-proteasome system (UPS) is the primary route for selective protein degradation in human cells. The UPS is an attractive target for novel cancer therapies, but the precise UPS genes and substrates important for cancer growth are incompletely understood. Leveraging multi-omics data across more than 9,000 human tumors and 33 cancer types, we found that over 19% of all cancer driver genes affect UPS function. We implicate transcription factors as important substrates and show that c-Myc stability is modulated by CUL3. Moreover, we developed a deep learning model (deepDegron) to identify mutations that result in degron loss and experimentally validated the prediction that gain-of-function truncating mutations in GATA3 and PPM1D result in increased protein stability. Last, we identified UPS driver genes associated with prognosis and the tumor microenvironment. This study demonstrates the important role of UPS dysregulation in human cancer and underscores the potential therapeutic utility of targeting the UPS.


Asunto(s)
Aprendizaje Profundo , Modelos Genéticos , Mutación , Proteínas de Neoplasias , Neoplasias , Proteolisis , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716376

RESUMEN

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatidicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatidicos/metabolismo , Tilacoides/metabolismo
4.
Exp Cell Res ; : 114152, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971518

RESUMEN

At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.

5.
Cell Mol Life Sci ; 81(1): 220, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763956

RESUMEN

Cardiovascular diseases are an array of age-related disorders, and accumulating evidence suggests a link between cardiac resident macrophages (CRMs) and the age-related disorders. However, how does CRMs alter with aging remains elusive. In the present study, aged mice (20 months old) have been employed to check for their cardiac structural and functional alterations, and the changes in the proportion of CRM subsets as well, followed by sorting of CRMs, including C-C Motif Chemokine Receptor 2 (CCR2)+ and CCR2- CRMs, which were subjected to Smart-Seq. Integrated analysis of the Smart-Seq data with three publicly available single-cell RNA-seq datasets revealed that inflammatory genes were drastic upregulated for both CCR2+ and CCR2- CRMs with aging, but genes germane to wound healing were downregulated for CCR2- CRMs, suggesting the differential functions of these two subsets. More importantly, inflammatory genes involved in damage sensing, complement cascades, and phagocytosis were largely upregulated in CCR2- CRMs, implying the imbalance of inflammatory response upon aging. Our work provides a comprehensive framework and transcriptional resource for assessing the impact of aging on CRMs with a potential for further understanding cardiac aging.


Asunto(s)
Envejecimiento , Perfilación de la Expresión Génica , Macrófagos , Ratones Endogámicos C57BL , Receptores CCR2 , Animales , Macrófagos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Ratones , Receptores CCR2/metabolismo , Receptores CCR2/genética , Transcriptoma , Miocardio/metabolismo , Masculino , Análisis de la Célula Individual , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Fagocitosis
6.
Anal Chem ; 96(3): 1029-1037, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38180447

RESUMEN

Metaproteomics offers a direct avenue to identify microbial proteins in microbiota, enabling the compositional and functional characterization of microbiota. Due to the complexity and heterogeneity of microbial communities, in-depth and accurate metaproteomics faces tremendous limitations. One challenge in metaproteomics is the construction of a suitable protein sequence database to interpret the highly complex metaproteomic data, especially in the absence of metagenomic sequencing data. Herein, we present a high-abundance protein-guided hybrid spectral library strategy for in-depth data independent acquisition (DIA) metaproteomic analysis (HAPs-hyblibDIA). A dedicated high-abundance protein database of gut microbial species is constructed and used to mine the taxonomic information on microbiota samples. Then, a sample-specific protein sequence database is built based on the taxonomic information using Uniprot protein sequence for subsequent analysis of the DIA data using hybrid spectral library-based DIA analysis. We evaluated the accuracy and sensitivity of the method using synthetic microbial community samples and human gut microbiome samples. It was demonstrated that the strategy can successfully identify taxonomic compositions of microbiota samples and that the peptides identified by HAPs-hyblibDIA overlapped greatly with the peptides identified using a metagenomic sequencing-derived database. At the peptide and species level, our results can serve as a complement to the results obtained using a metagenomic sequencing-derived database. Furthermore, we validated the applicability of the HAPs-hyblibDIA strategy in a cohort of human gut microbiota samples of colorectal cancer patients and controls, highlighting its usability in biomedical research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Proteómica/métodos , Proteínas/análisis , Péptidos
7.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627624

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Asunto(s)
Brassica rapa , Brassica , Infertilidad Masculina , ARN Largo no Codificante , Masculino , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Brassica/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Fertilidad , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética
8.
Magn Reson Med ; 91(6): 2459-2482, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38282270

RESUMEN

PURPOSE: To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS: A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS: Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION: The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.


Asunto(s)
Imagen por Resonancia Magnética , Imágenes de Resonancia Magnética Multiparamétrica , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen
9.
Theor Appl Genet ; 137(7): 170, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913206

RESUMEN

The timely degradation of tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development. Although several genes involved in tapetum development have been characterized, the molecular mechanisms underlying tapetum degeneration remain elusive. Here, we showed that mutation in Abnormal Degraded Tapetum 1 (ADT1) resulted in overaccumulation of Reactive Oxygen Species (ROS) and abnormal anther development, causing earlier tapetum Programmed Cell Death (PCD) and pollen abortion. ADT1 encodes a nuclear membrane localized protein, which is strongly expressed in the developing microspores and tapetal cells during early anther development. Moreover, ADT1 could interact with metallothionein MT2b, which was related to ROS scavenging and cell death regulation. These findings indicate that ADT1 is required for proper timing of tapetum PCD by regulating ROS homeostasis, expanding our understanding of the regulatory network of male reproductive development in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Oryza , Proteínas de Plantas , Polen , Especies Reactivas de Oxígeno , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Polen/crecimiento & desarrollo , Polen/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Muerte Celular , Flores/crecimiento & desarrollo , Flores/genética , Apoptosis
10.
J Org Chem ; 89(1): 710-718, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101332

RESUMEN

The proton of alcohols as the sole hydrogen source in diboron-mediated nickel-catalyzed asymmetric transfer hydrogenation of cyclic N-sulfonyl imines has been developed, providing the chiral cyclic sulfamidates in excellent enantioselectivities. The mechanistic investigations suggested that the proton of alcohols could be activated by tetrahydroxydiboron to form active nickel hydride species.

11.
Org Biomol Chem ; 22(25): 5014-5031, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38831700

RESUMEN

Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.

12.
J Pathol ; 260(1): 17-31, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36715683

RESUMEN

Macropinocytosis is an effective strategy to mitigate nutrient starvation. It can fuel cancer cell growth in nutrient-limited conditions. However, whether and how macropinocytosis contributes to the rapid proliferation of hepatocellular carcinoma cells, which frequently experience an inadequate nutrient supply, remains unclear. Here, we demonstrated that nutrient starvation strongly induced macropinocytosis in some hepatocellular carcinoma cells. It allowed the cells to acquire extracellular nutrients and supported their energy supply to maintain rapid proliferation. Furthermore, we found that the phospholipid flippase ATP9A was critical for regulating macropinocytosis in hepatocellular carcinoma cells and that high ATP9A levels predicted a poor outcome for patients with hepatocellular carcinoma. ATP9A interacted with ATP6V1A and facilitated its transport to the plasma membrane, which promoted plasma membrane cholesterol accumulation and drove RAC1-dependent macropinocytosis. Macropinocytosis inhibitors significantly suppressed the energy supply and proliferation of hepatocellular carcinoma cells characterised by high ATP9A expression under nutrient-limited conditions. These results have revealed a novel mechanism that overcomes nutrient starvation in hepatocellular carcinoma cells and have identified the key regulator of macropinocytosis in hepatocellular carcinoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Membrana Celular , Neoplasias Hepáticas/metabolismo , Nutrientes , Fosfolípidos/metabolismo
13.
Thromb J ; 22(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200557

RESUMEN

BACKGROUND: Ticagrelor is a novel receptor antagonist that selectively binds to the P2Y12 receptor, thereby inhibiting adenosine diphosphate (ADP)-mediated platelet aggregation. Compared to clopidogrel, ticagrelor has the advantages of a fast onset, potent effects, and a reversible platelet inhibition function, which make this drug clinically suitable for treating acute coronary syndrome (ACS), especially acute ST-segment elevation myocardial infarction (STEMI). OBJECTIVE: This review was performed to determine the basic characteristics, clinical effects, and adverse reactions of ticagrelor. METHODS: Relevant trials and reports were obtained from the MEDLINE, Embase, and Cochrane Library databases. RESULTS: Ticagrelor is rapidly absorbed by the body after oral administration, exhibits inherent activity without requiring metabolic activation, and binds reversibly to the P2Y12 receptor. Ticagrelor has been recommended in ACS treatment guidelines worldwide due to its advantageous pharmacological properties and significant clinical benefits. Ticagrelor inhibits platelet aggregation, inhibits inflammatory response, enhances adenosine function, and has cardioprotective effects. However, ticagrelor also causes adverse reactions such as bleeding tendency, dyspnea, ventricular pause, gout, kidney damage, and thrombotic thrombocytopenic purpura in clinical treatment. Therefore, it is necessary to pay attention to risk assessments when using ticagrelor. CONCLUSION: Ticagrelor is a promising drug for the effective treatment of ACS. When using ticagrelor, individualized treatment should be provided based on the specific conditions of the patients to avoid serious adverse events.

14.
Mol Biol Rep ; 51(1): 263, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302771

RESUMEN

BACKGROUND: TRIM proteins, recognized as a class of E3 ubiquitin ligases, are increasingly acknowledged for their antipathogen immune functions in mammals and fish. In the Chinese soft-shelled turtle (Pelodiscus sinensis), a secondary aquatic reptile that occupies a unique evolutionary position, the TRIM gene has rarely been reported. METHODS AND RESULTS: In the present study, 48 PsTRIM proteins were identified from the genome of Pelodiscus sinensis via Hidden Markov Model (HMM) searches and Signal Transduction ATPases with Numerous Domains (SMART) analysis. These PsTRIMs were found across 43 distinct scaffolds, and phylogenetic analyses classified them into three principal clades. The PsTRIMs feature a conserved assembly of either RING-B-box-coiled-coil (RBCC) or B-box-coiled-coil (BBC) domains at the N-terminus, in addition to eight unique domains at the C-terminus, including the B30.2 domain, 19 of which were identified. Expression profiling revealed ubiquitous expression of the 48 PsTRIMs across various P. sinensis tissues. Notably, seven PsTRIMs exhibited significant differential expression in liver transcriptomes following infection with Aeromonas hydrophila. Weighted gene coexpression network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis implicated PsTRIM14 and PsTRIM28 as key players in host defense against bacterial invasion. Real-time quantitative PCR results indicated that PsTRIM1, PsTRIM2, PsTRIM14, and PsTRIM28 experienced marked upregulation in P. sinensis livers at 12 h post-infection with A. hydrophila. CONCLUSIONS: Our study is the first to comprehensively identify and analyze the functions of TRIM genes in P. sinensis, unveiling their considerable diversity and potential roles in modulating immune responses.


Asunto(s)
Transcriptoma , Tortugas , Animales , Aeromonas hydrophila , Genómica , Filogenia , Transcriptoma/genética , Proteínas de Motivos Tripartitos/genética , Tortugas/genética
15.
Part Fibre Toxicol ; 21(1): 13, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454452

RESUMEN

BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.


Asunto(s)
Aborto Espontáneo , Nanopartículas , Embarazo , Femenino , Humanos , Animales , Ratones , Aborto Espontáneo/inducido químicamente , Poliestirenos/toxicidad , Caspasa 3 , Microplásticos , Plásticos , Caspasa 2 , Placenta , Apoptosis , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas c-bcl-2 , Nanopartículas/toxicidad
16.
J Nanobiotechnology ; 22(1): 164, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600601

RESUMEN

Plasma proteins are considered the most informative source of biomarkers for disease diagnosis and monitoring. Mass spectrometry (MS)-based proteomics has been applied to identify biomarkers in plasma, but the complexity of the plasma proteome and the extremely large dynamic range of protein abundances in plasma make the clinical application of plasma proteomics highly challenging. We designed and synthesized zeolite-based nanoparticles to deplete high-abundance plasma proteins. The resulting novel plasma proteomic assay can measure approximately 3000 plasma proteins in a 45 min chromatographic gradient. Compared to those in neat and depleted plasma, the plasma proteins identified by our assay exhibited distinct biological profiles, as validated in several public datasets. A pilot investigation of the proteomic profile of a hepatocellular carcinoma (HCC) cohort identified 15 promising protein features, highlighting the diagnostic value of the plasma proteome in distinguishing individuals with and without HCC. Furthermore, this assay can be easily integrated with all current downstream protein profiling methods and potentially extended to other biofluids. In conclusion, we established a robust and efficient plasma proteomic assay with unprecedented identification depth, paving the way for the translation of plasma proteomics into clinical applications.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Zeolitas , Humanos , Carcinoma Hepatocelular/diagnóstico , Proteoma , Proteómica/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores/análisis , Proteínas Sanguíneas/análisis
17.
BMC Nephrol ; 25(1): 158, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720274

RESUMEN

BACKGROUND: Ureteropelvic junction obstruction (UPJO) is the most common cause of pediatric congenital hydronephrosis, and continuous kidney function monitoring plays a role in guiding the treatment of UPJO. In this study, we aimed to explore the differentially expressed proteins (DEPs) in the urinary extracellular vesicles(uEVs) of children with UPJO and determine potential biomarkers of uEVs proteins that reflect kidney function changes. METHODS: Preoperative urine samples from 6 unilateral UPJO patients were collected and divided into two groups: differential renal function (DRF) ≥ 40% and DRF < 40%.We subsequently used data-independent acquisition (DIA) to identify and quantify uEVs proteins in urine, screened for DEPs between the two groups, and analyzed biofunctional enrichment information. The proteomic data were evaluated by Western blotting and enzyme-linked immunosorbent assay (ELISA) in a new UPJO testing cohort. RESULTS: After one-way ANOVA, a P adj value < 0.05 (P-value corrected by Benjamin-Hochberg) was taken, and the absolute value of the difference multiple was more than 1.5 as the screening basis for obtaining 334 DEPs. After analyzing the enrichment of the DEPs according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment combined with the protein-protein interaction (PPI) network results, we selected nicotinamide adenine dinucleotide-ubiquinone oxidoreductase core subunit S1 (NDUFS1) for further detection. The expression of NDUFS1 in uEVs was significantly lower in patients with DRF < 40% (1.182 ± 0.437 vs. 1.818 ± 0.489, P < 0.05), and the expression level of NDUFS1 was correlated with the DRF in the affected kidney (r = 0.78, P < 0.05). However, the NDUFS1 concentration in intravesical urine was not necessarily related to the change in DRF (r = 0.28, P = 0.24). CONCLUSIONS: Reduced expression of NDUFS1 in uEVs might indicate the decline of DRF in children with UPJO.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Obstrucción Ureteral , Preescolar , Femenino , Humanos , Masculino , Biomarcadores/orina , Vesículas Extracelulares/metabolismo , Hidronefrosis/orina , Hidronefrosis/congénito , Riñón/metabolismo , Pelvis Renal , Proteómica/métodos , Obstrucción Ureteral/orina , Obstrucción Ureteral/congénito
18.
Nucleic Acids Res ; 50(D1): D1391-D1397, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34534350

RESUMEN

Syngeneic mouse models are tumors derived from murine cancer cells engrafted on genetically identical mouse strains. They are widely used tools for studying tumor immunity and immunotherapy response in the context of a fully functional murine immune system. Large volumes of syngeneic mouse tumor expression profiles under different immunotherapy treatments have been generated, although a lack of systematic collection and analysis makes data reuse challenging. We present Tumor Immune Syngeneic MOuse (TISMO), a database with an extensive collection of syngeneic mouse model profiles with interactive visualization features. TISMO contains 605 in vitro RNA-seq samples from 49 syngeneic cancer cell lines across 23 cancer types, of which 195 underwent cytokine treatment. TISMO also includes 1518 in vivo RNA-seq samples from 68 syngeneic mouse tumor models across 19 cancer types, of which 832 were from immune checkpoint blockade (ICB) studies. We manually annotated the sample metadata, such as cell line, mouse strain, transplantation site, treatment, and response status, and uniformly processed and quality-controlled the RNA-seq data. Besides data download, TISMO provides interactive web interfaces to investigate whether specific gene expression, pathway enrichment, or immune infiltration level is associated with differential immunotherapy response. TISMO is available at http://tismo.cistrome.org.


Asunto(s)
Biomarcadores Farmacológicos , Neoplasias/genética , Programas Informáticos , Microambiente Tumoral/inmunología , Animales , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/tendencias , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/genética
19.
Biochem Genet ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416272

RESUMEN

miRNA has been a research hotspot in recent years and its scope of action is very wide, involving the regulation of cell proliferation, differentiation, apoptosis, and other biological behaviors. This study intends to explore the role of miRNA in the lipid metabolism and development of Wilms tumor (WT) by detecting and analyzing the differences in the expression profiles of miRNAs between the tumor and adjacent normal tissue. Gene detection was performed in tumor tissues and adjacent normal tissues of three cases of WT to screen differentially expressed miRNAs (DEMs). According to our previous research, FASN, which participates in the lipid metabolism pathway, may be a target of WT. The starBase database was used to predict FASN-targeted miRNAs. The above two groups of miRNAs were intersected to obtain FASN-targeted DEMs and then GO Ontology (GO) functional enrichment analysis of FASN-targeted DEMs was performed. Finally, the FASN-targeted DEMs were compared and further verified by qRT‒PCR. Through gene sequencing and differential analysis, 287 DEMs were obtained, including 132 upregulated and 155 downregulated miRNAs. The top ten DEMs were all downregulated. Fourteen miRNAs targeted by the lipid metabolism-related gene FASN were predicted by starBase. After intersection with the DEMs, three miRNAs were finally obtained, namely, miR-107, miR-27a-3p, and miR-335-5p. GO enrichment analysis was mainly concentrated in the Parkin-FBXW7-Cul1 ubiquitin ligase complex and response to prostaglandin E. Further experimental verification showed that miR-27a-3p was significantly correlated with WT (P = 0.0018). Imbalanced expression of miRNAs may be involved in the occurrence and development of WT through lipid metabolism. The expression of miR-27a-3p is related to the malignant degree of WT, and it may become the target of diagnosis, prognosis, and treatment of WT in the later stage.

20.
Biochem Genet ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710962

RESUMEN

The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture animal in China and exhibits growth dimorphism. Single-male cultures are often selected for higher economic efficiency. However, the mechanism of sex differentiation in P. sinensis is not well-known. In this study, a comparative transcriptome analysis of male (ZZ)- and 17ß-oestradiol (E2)-induced pseudo-female (ZZ + E2)-stage embryonic gonads of P. sinensis was performed. A total of 420 differentially expressed genes (DEGs), which included 271 upregulated genes and 149 downregulated genes, were identified. These DEGs were mainly involved in several sex-related pathways, such as "ovarian steroidogenesis", "steroid hormone biosynthesis", "PPAR signalling pathway", and "metabolism of xenobiotics by cytochrome P450". In addition, 50 known and novel candidate genes involved in sex differentiation, such as the male-biased genes AMH, DMRT1, TBX1, and CYP26A1 and the female-biased genes CYP1A1, RASD1, and SOX17, were investigated and identified. For further verification, the full-length cDNAs of SOX17 and CYP26A1 were obtained. SOX17 contains a 1218-bp ORF and encodes 405 amino acids containing an HMG functional domain unique to the Sox superfamily. CYP26A1 contains a 1485-bp ORF and encodes 494 amino acids. Different expression levels of SOX17 and CYP26A1 could be detected in all the tested tissues of males and females. Notably, the expression of CYP26A1 was markedly greater in the gonads of male embryos (P < 0.05) than in those of female embryos, whereas the expression of SOX17 showed the opposite trend (P < 0.05). Taken together, the RNA-seq and qRT‒PCR results suggested potential roles for SOX17 and CYP26A1 in promoting female and male gonadal development, respectively, in P. sinensis. Our results provide new evidence for the mechanism of sex differentiation in P. sinensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA