RESUMEN
Myriad physiological and pathogenic processes are governed by protein levels and modifications. Controlled protein activity perturbation is essential to studying protein function in cells and animals. Based on Trim-Away technology, we screened for truncation variants of E3 ubiquitinase Trim21 with elevated efficiency (ΔTrim21) and developed multiple ΔTrim21-based targeted protein-degradation systems (ΔTrim-TPD) that can be transfected into host cells. Three ΔTrim-TPD variants are developed to enable chemical and light-triggered programmable activation of TPD in cells and animals. Specifically, we used ΔTrim-TPD for (1) red-light-triggered inhibition of HSV-1 virus proliferation by degrading the packaging protein gD, (2) for chemical-triggered control of the activity of Cas9/dCas9 protein for gene editing, and (3) for blue-light-triggered degradation of two tumor-associated proteins for spatiotemporal inhibition of melanoma tumor growth in mice. Our study demonstrates that multiple ΔTrim21-based controllable TPD systems provide powerful tools for basic biology research and highlight their potential biomedical applications.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas/metabolismo , Proteolisis , Mamíferos/metabolismoRESUMEN
p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.
Asunto(s)
Autofagosomas , Proteínas Ubiquitinadas , Ratones , Ratas , Humanos , Animales , Autofagosomas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Acilación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mamíferos/metabolismoRESUMEN
mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.
Asunto(s)
Autofagosomas/enzimología , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Glucógeno Sintasa Quinasa 3/metabolismo , Metabolismo de los Lípidos , Hígado/enzimología , Lisina Acetiltransferasa 5/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Gotas Lipídicas/metabolismo , Hígado/patología , Lisina Acetiltransferasa 5/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Fosfato/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Supresoras de TumorRESUMEN
The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.
Asunto(s)
Testículo , Pez Cebra , Animales , Masculino , Femenino , Testículo/metabolismo , Pez Cebra/genética , Andrógenos/genética , Andrógenos/metabolismo , Gónadas/metabolismo , Diferenciación Sexual/genética , Estrógenos/genéticaRESUMEN
PLK1 (Polo-like kinase 1) plays a critical role in the progression of lung adenocarcinoma (LUAD). Recent studies have unveiled that targeting PLK1 improves the efficacy of immunotherapy, highlighting its important role in the regulation of tumor immunity. Nevertheless, our understanding of the intricate interplay between PLK1 and the tumor microenvironment (TME) remains incomplete. Here, using genetically engineered mouse model and single-cell RNA-seq analysis, we report that PLK1 promotes an immunosuppressive TME in LUAD, characterized with enhanced M2 polarization of tumor associated macrophages (TAM) and dampened antigen presentation process. Mechanistically, elevated PLK1 coincides with increased secretion of CXCL2 cytokine, which promotes M2 polarization of TAM and diminishes expression of class II major histocompatibility complex (MHC-II) in professional antigen-presenting cells. Furthermore, PLK1 negatively regulates MHC-II expression in cancer cells, which has been shown to be associated with compromised tumor immunity and unfavorable patient outcomes. Taken together, our results reveal PLK1 as a novel modulator of TME in LUAD and provide possible therapeutic interventions.
Asunto(s)
Adenocarcinoma del Pulmón , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Análisis de la Célula Individual , Microambiente Tumoral , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Presentación de Antígeno/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismoRESUMEN
Advancements in peptidomics have revealed numerous small open reading frames with coding potential and revealed that some of these micropeptides are closely related to human cancer. However, the systematic analysis and integration from sequence to structure and function remains largely undeveloped. Here, as a solution, we built a workflow for the collection and analysis of proteomic data, transcriptomic data, and clinical outcomes for cancer-associated micropeptides using publicly available datasets from large cohorts. We initially identified 19 586 novel micropeptides by reanalyzing proteomic profile data from 3753 samples across 8 cancer types. Further quantitative analysis of these micropeptides, along with associated clinical data, identified 3065 that were dysregulated in cancer, with 370 of them showing a strong association with prognosis. Moreover, we employed a deep learning framework to construct a micropeptide-protein interaction network for further bioinformatics analysis, revealing that micropeptides are involved in multiple biological processes as bioactive molecules. Taken together, our atlas provides a benchmark for high-throughput prediction and functional exploration of micropeptides, providing new insights into their biological mechanisms in cancer. The HMPA is freely available at http://hmpa.zju.edu.cn.
Asunto(s)
Biología Computacional , Neoplasias , Péptidos , Proteómica , Humanos , Proteómica/métodos , Péptidos/metabolismo , Péptidos/genética , Péptidos/química , Neoplasias/metabolismo , Neoplasias/genética , Biología Computacional/métodos , Proteoma/metabolismo , Mapas de Interacción de Proteínas , Aprendizaje ProfundoRESUMEN
Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.
Asunto(s)
Diabetes Mellitus Experimental , Insulina , Ratones , Animales , Insulina/metabolismo , Péptido Hidrolasas/metabolismo , Diabetes Mellitus Experimental/terapia , Endopeptidasas/metabolismo , Secreción de Insulina , Apoptosis/fisiologíaRESUMEN
Metastasis of lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR), an important transcription factor, is involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, acts as an oncogene promoting the malignancy of multiple cancer types. However, the interaction between these two factors and their significance in lung cancer remain to be determined. In this study, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, leading to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses reveal that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), activating thyroid hormone (TH) signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or a deiodinase inhibitor disrupts this property. Taking together, our results identify the AHR phosphorylation by PLK1 and subsequent activation of DIO2-TH signaling as mechanisms leading to LUAD metastasis. These findings can inform possible therapeutic interventions for this event.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Fosforilación , Yoduro Peroxidasa/metabolismo , Receptores de Hidrocarburo de Aril/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Adenocarcinoma del Pulmón/genética , Hormonas Tiroideas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/fisiología , Quinasa Tipo Polo 1RESUMEN
BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.
Asunto(s)
Adenina , ADN Mitocondrial , Insuficiencia Cardíaca , Metiltransferasas , Miocitos Cardíacos , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Metiltransferasas/metabolismo , Metiltransferasas/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Adenina/análogos & derivados , Adenina/farmacología , Adenina/metabolismo , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Metilación de ADN , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
BACKGROUND AND AIMS: The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS: We generated mutant mouse lines with hepatocyte-specific deletions of Met, Ptpn11/Shp2, Ikkß, or Ctnnb1/ß-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS: The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
RESUMEN
BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.
Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucólisis , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Transducción de Señal , Animales , Isquemia/tratamiento farmacológico , Isquemia/fisiopatología , Isquemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Neovascularización Fisiológica/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucólisis/efectos de los fármacos , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Humanos , Miembro Posterior/irrigación sanguínea , Masculino , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/etiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Inductores de la Angiogénesis/farmacología , Fragmentos de Péptidos/farmacología , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Incretinas/farmacología , AngiogénesisRESUMEN
SignificanceIncense has been linked to ceremonies, religions, medicines, and cosmetics worldwide for thousands of years. While Chinese texts in the Tang dynasty (618 to 907 CE) indicate that numerous exotic aromatic substances were already being introduced into China through the land and maritime Silk Road, this has been rarely demonstrated archaeologically. This study identifies three types of incense associated with the sacred sarira of Sakyamuni Budda from the underground palace of Famen Royal Temple in central China, providing direct evidence of aromatics including elemi, agarwood, and frankincense as well as their composite product, namely Hexiang (blending of aromatics), in Buddhist activities, which may have promoted the spread of incense and the development of aromatic knowledge systems in medieval China.
RESUMEN
Warmth preservation in cold climates requires a long-term heat supply. Conventional thermal devices usually deliver excessive heat and have difficulty preventing heat loss. Herein, to achieve durable thermal comfort, an asymmetric composite (AAAC) is devised through vacuum-filtrating silver nanowires (AgNWs) onto the surface of a poly(ethylene glycol) (PEG)-infiltrated aramid nanofiber aerogel. AgNW e-skin can transfer strong Joule heat to the back side of the AAAC, where the infused PEG further stores thermal energy by phase transition and then releases it to the body constantly after the power is off. Base on the Janus structure, the AAAC can provide thermotherapy for human waists and knees, holding a suitable temperature range of 37-39 °C for 5-8 min without a heat source. In addition, low infrared emissivity (0.064-0.315) of e-skin allows the AAAC to conceal thermal targets while producing Joule heat, which achieves comfortable and safe thermal management in multiple occasions including daily life and military warfare.
RESUMEN
Cell-cell interactions instruct cell fate and function. These interactions are hijacked to promote cancer development. Single-cell transcriptomics and spatial transcriptomics have become powerful new tools for researchers to profile the transcriptional landscape of cancer at unparalleled genetic depth. In this review, we discuss the rapidly growing array of computational tools to infer cell-cell interactions from non-spatial single-cell RNA-sequencing and the limited but growing number of methods for spatial transcriptomics data. Downstream analyses of these computational tools and applications to cancer studies are highlighted. We finish by suggesting several directions for further extensions that anticipate the increasing availability of multi-omics cancer data.
Asunto(s)
Neoplasias , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Neoplasias/genética , Comunicación Celular/genética , Diferenciación Celular , Análisis de la Célula IndividualRESUMEN
DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAAâACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.
Asunto(s)
ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos , Etopósido , Intrones , Poliadenilación , Humanos , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Células K562 , Poliadenilación/efectos de los fármacos , Poliadenilación/genética , Intrones/genética , Sistemas CRISPR-CasRESUMEN
Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.
RESUMEN
Degradation of endoplasmic reticulum (ER) by selective autophagy (ER-phagy) is crucial for ER homeostasis. However, it remains unclear how ER scission is regulated for subsequent autophagosomal sequestration and lysosomal degradation. Here, we show that oligomerization of ER-phagy receptor FAM134B (also referred to as reticulophagy regulator 1 or RETREG1) through its reticulon-homology domain is required for membrane fragmentation in vitro and ER-phagy in vivo. Under ER-stress conditions, activated CAMK2B phosphorylates the reticulon-homology domain of FAM134B, which enhances FAM134B oligomerization and activity in membrane fragmentation to accommodate high demand for ER-phagy. Unexpectedly, FAM134B G216R, a variant derived from a type II hereditary sensory and autonomic neuropathy (HSAN) patient, exhibits gain-of-function defects, such as hyperactive self-association and membrane scission, which results in excessive ER-phagy and sensory neuron death. Therefore, this study reveals a mechanism of ER membrane fragmentation in ER-phagy, along with a signaling pathway in regulating ER turnover, and suggests a potential implication of excessive selective autophagy in human diseases.
Asunto(s)
Autofagia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Estrés del Retículo Endoplásmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Membrana Celular/metabolismo , Citocinesis/fisiología , Retículo Endoplásmico/metabolismo , Mutación con Ganancia de Función , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , PolimerizacionRESUMEN
Our study aims to explore the effects of neoadjuvant chemotherapy (NACT) on tumour cells and immune cells in the immune microenvironment of patients with high-grade serous ovarian cancer (HGSOC). Single-cell RNA sequencing data of paired ovarian cancer tissues were analysed before and after NACT in 11 patients with HGSOC. The effect of NACT on two major cell components of the tumour microenvironment, epithelial cells and CD8+T cells, was investigated. The mechanisms of epithelial cell evasion by NACT and immune killing were explored from the perspectives of gene expression, functional characteristics, transcriptional regulation, and cell communication. Key targets for reversing NACT resistance were identified and possible therapeutic strategies proposed. While NACT improved the de novo differentiation of anti-tumour CD8+T cells, enhancing their anti-tumour function, it increased the proportion of cancer cells with high HSP90B1 expression. Thus, the potential reasons for NACT resistance were identified as: 1) high levels of endoplasmic reticulum stress (ERS) characteristics, 2) high expression of the MDK-NCL ligand-receptor pair between them and exhausted CD8+T cells before NACT, and 3) high expression of the NECTIN2-TIGIT immune ligand-receptor pair between them and exhausted CD8+T cells after NACT. Thus, our study reveals the mechanisms underlying NACT resistance in patients with HGSOC from the perspective of the independent and interactive roles of cancer cells and CD8+T cells. We propose therapeutic strategies targeting the ERS marker HSP90B1 and the immune escape marker MDK before or during NACT, while targeting NECTIN2 blockade after NACT. This approach may offer new insights into combination treatments for patients with HGSOC displaying NACT resistance.
Asunto(s)
Linfocitos T CD8-positivos , Resistencia a Antineoplásicos , Estrés del Retículo Endoplásmico , Terapia Neoadyuvante , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Resistencia a Antineoplásicos/inmunología , Resistencia a Antineoplásicos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Terapia Neoadyuvante/métodos , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Persona de Mediana EdadRESUMEN
Single-molecule catalysis reflects the heterogeneity of each molecule, providing a unique insight into the complex catalytic mechanism through the statistics of stochastic individuals. However, the present study methods for single-molecule catalysis are either complicated or have low throughput, limiting their rapid acquisition of single-molecule reaction kinetics with statistical significance. Here, a label-free imaging method is developed for the study of single-molecule catalysis in microdroplets with high throughput based on the absorption of the reaction molecules. A wide distribution of the catalytic reaction rate constant value of 238-2026 molecules s-1 is observed from 68 single enzymes. Interestingly, an exponential decayed distribution of the enzyme activity can be clearly observed due to the rapid denaturation of the enzymes. The denaturation mechanism of the Horse Radish Peroxidase (HRP) enzyme is clarified. It is revealed that the denaturation of each enzyme goes through a gradual decay rather than a truncated turn-off process from a single molecule point of view. This absorption-based method can be applied to most of the catalytic reactions with high throughput, which offers an indispensable route for the rapid statistical analysis of various single-molecule catalytic reactions, making it particularly suitable for the acquisition of catalytic kinetics from highly unstable enzymes.
Asunto(s)
Peroxidasa de Rábano Silvestre , Cinética , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Catálisis , Enzimas/química , Enzimas/metabolismoRESUMEN
Urolithiasis stands as a prevalent ailment within the urinary system, with hyperoxaluria and hypocitraturia being the most frequent manifestations characterized by excessive oxalic acid (OA) and deficient citric acid (CA) levels in urine. Detecting these compounds in urine quantitatively holds paramount importance for early urolithiasis screening. Existing methodologies fall short in achieving simultaneous and on-site identification of OA and CA, posing challenges for accurate urolithiasis screening. Addressing this concern, the study successfully accomplishes the concurrent identification of OA and CA in urine through a combination of dual-spectral analysis and biomimetic peroxidase utilization. Bovine serum albumin and dithiothreitol-modified copper nanoclusters (BSA-DTT-CuNCs) are employed as biomimetic peroxidases, effectively mitigating interference and enabling the simultaneous determination of OA and CA. The quantification range spans from 0 to 12 mm for OA and 0.5 to 2.5 mm for CA, with detection limits of 0.18 and 0.11 mm, respectively. To facilitate swift and on-location urine analysis, a fully automated urine analyzer (FAUA) is introduced that streamlines the process of biomarker pretreatment and identification within urine samples. Validation with real urine samples from urolithiasis patients demonstrates the method's diagnostic precision, highlighting the dual-spectral technique and analyzer's promising role in urolithiasis screening.