Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968116

RESUMEN

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Asunto(s)
Reparación del ADN , Ubiquitina-Proteína Ligasas , Humanos , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
PLoS Pathog ; 20(8): e1012397, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39116040

RESUMEN

As the Coronavirus Disease 2019 (COVID-19) pandemic continues, there is a growing concern regarding the relationship between viral infections and neuropathic pain. Chronic neuropathic pain resulting from virus-induced neural dysfunction has emerged as a significant issue currently faced. However, the molecular mechanisms underlying this phenomenon remain unclear, and clinical treatment outcomes are often suboptimal. Therefore, delving into the relationship between viral infections and neuropathic pain, exploring the pathophysiological characteristics and molecular mechanisms of different viral pain models, can contribute to the discovery of potential therapeutic targets and methods, thereby enhancing pain relief and improving the quality of life for patients. This review focuses on HIV-related neuropathic pain (HNP), postherpetic neuralgia (PHN), and neuropathic pain caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, examining rodent models and relevant cellular molecular pathways. Through elucidating the connection between viral infections and neuropathic pain, it aims to delineate the current limitations and challenges faced by treatments, thereby providing insights and directions for future clinical practice and research.


Asunto(s)
COVID-19 , Neuralgia , SARS-CoV-2 , Humanos , Neuralgia/virología , Neuralgia/terapia , Neuralgia/etiología , Animales , COVID-19/complicaciones , COVID-19/virología , COVID-19/terapia , Infecciones por VIH/complicaciones , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Neuralgia Posherpética/virología , Neuralgia Posherpética/terapia
3.
Plant J ; 119(1): 283-299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38606500

RESUMEN

Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.


Asunto(s)
Resistencia a la Sequía , Malus , Proteínas de Plantas , Factores de Transcripción , Ubiquitinación , Resistencia a la Sequía/genética , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 195(4): 3024-3038, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38696652

RESUMEN

Pear ring rot, caused by Botryosphaeria dothidea, is the most serious disease of pear (Pyrus spp.) trees. However, the molecular mechanisms underlying pear resistance to B. dothidea remain elusive. In this study, we demonstrated that the pear AuTophagy-related Gene 1a (PbrATG1a) plays a key role in autophagic activity and resistance to B. dothidea. Stable overexpression of PbrATG1a enhanced resistance to B. dothidea in pear calli. Autophagy activity was greater in PbrATG1a-overexpressing calli than in wild-type calli. We used yeast 1-hybrid screening to identify a transcription factor, related to ABI3 and VP1 (Pbr3RAV2), that binds the promoter of PbrATG1a and enhances pear resistance to B. dothidea by regulating autophagic activity. Specifically, the overexpression of Pbr3RAV2 enhanced resistance to B. dothidea in pear calli, while transient silencing of Pbr3RAV2 resulted in compromised resistance to B. dothidea in Pyrus betulifolia. In addition, we identified Transparent Testa Glabra 1 (PbrTTG1), which interacts with Pbr3RAV2. Pathogen infection enhanced the interaction between Pbr3RAV2 and PbrTTG1. The Pbr3RAV2-PbrTTG1 complex increased the binding capacity of Pbr3RAV2 and transcription of PbrATG1a. In addition to providing insights into the molecular mechanisms underlying pear disease resistance, these findings suggest potential genetic targets for enhancing disease resistance in pear.


Asunto(s)
Ascomicetos , Autofagia , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Pyrus , Factores de Transcripción , Pyrus/microbiología , Pyrus/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Autofagia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
5.
Mol Psychiatry ; 29(5): 1253-1264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228891

RESUMEN

The pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6]. In this study, we demonstrate that deficiency of the scaffolding protein FRMD5 leads to neurodevelopmental dysfunction and ASD-like behavior in mice. FRMD5 deficiency results in morphological abnormalities in neurons and synaptic dysfunction in mice. Frmd5-deficient mice display learning and memory dysfunction, impaired social function, and increased repetitive stereotyped behavior. Mechanistically, tandem mass tag (TMT)-labeled quantitative proteomics revealed that FRMD5 deletion affects the distribution of synaptic proteins involved in the pathological process of ASD. Collectively, our findings delineate the critical role of FRMD5 in neurodevelopment and ASD pathophysiology, suggesting potential therapeutic implications for the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Animales , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Neuronas/metabolismo , Conducta Animal/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ratones Noqueados , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Ratones Endogámicos C57BL , Conducta Social , Conducta Estereotipada , Sinapsis/metabolismo , Femenino
6.
Chem Soc Rev ; 53(8): 3829-3895, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436202

RESUMEN

Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.

7.
J Proteome Res ; 23(6): 1937-1947, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38776154

RESUMEN

Lactylation is a novel post-translational modification of proteins. Although the histone lactylation modification has been reported to be involved in glucose metabolism, its role and molecular pathways in gestational diabetes mellitus (GDM) are still unclear. This study aims to elucidate the histone lactylation modification landscapes of GDM patients and explore lactylation-modification-related genes involved in GDM. We employed a combination of RNA-seq analysis and chromatin immunoprecipitation sequencing (ChIP-seq) analysis to identify upregulated differentially expressed genes (DEGs) with hyperhistone lactylation modification in GDM. We demonstrated that the levels of lactate and histone lactylation were significantly elevated in GDM patients. DEGs were involved in diabetes-related pathways, such as the PI3K-Akt signaling pathway, Jak-STAT signaling pathway, and mTOR signaling pathway. ChIP-seq analysis indicated that histone lactylation modification in the promoter regions of the GDM group was significantly changed. By integrating the results of RNA-seq and ChIP-seq analysis, we found that CACNA2D1 is a key gene for histone lactylation modification and is involved in the progression of GDM by promoting cell vitality and proliferation. In conclusion, we identified the key gene CACNA2D1, which upregulated and exhibited hypermodification of histone lactylation in GDM. These findings establish a theoretical groundwork for the targeted therapy of GDM.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Diabetes Gestacional , Histonas , Procesamiento Proteico-Postraduccional , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Humanos , Femenino , Embarazo , Histonas/metabolismo , Histonas/genética , Transducción de Señal/genética , RNA-Seq , Adulto
8.
J Cell Mol Med ; 28(16): e70025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39164826

RESUMEN

Metastasis is a crucial stage in tumour progression, and cancer-associated fibroblasts (CAFs) support metastasis through their participation in extracellular matrix (ECM) stiffness. CD248 is a possible biomarker for non-small cell lung cancer (NSCLC)-derived CAFs, but its role in mediating ECM stiffness to promote NSCLC metastasis is unknown. We investigated the significance of CD248+ CAFs in activating the Hippo axis and promoting connective tissue growth factor (CTGF) expression, which affects the stromal collagen I environment and improves ECM stiffness, thereby facilitating NSCLC metastasis. In this study, we found that higher levels of CD248 in CAFs induced the formation of collagen I, which in turn increased extracellular matrix stiffness, thereby enabling NSCLC cell infiltration and migration. Hippo axis activation by CD248+ CAFs induces CTGF expression, which facilitates the formation of the collagen I milieu in the stromal matrix. In a tumour lung metastasis model utilizing fibroblast-specific CD248 gene knockout mice, CD248 gene knockout mice showed a significantly reduced ability to develop tumour lung metastasis compared to that of WT mice. Our findings demonstrate that CD248+ CAFs activate the Hippo pathway, thereby inducing CTGF expression, which in turn facilitates the collagen I milieu of the stromal matrix, which promotes NSCLC metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Factor de Crecimiento del Tejido Conjuntivo , Matriz Extracelular , Vía de Señalización Hippo , Neoplasias Pulmonares , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Animales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Matriz Extracelular/metabolismo , Ratones , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/genética , Metástasis de la Neoplasia , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Microambiente Tumoral
9.
J Cell Mol Med ; 28(4): e18185, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38396325

RESUMEN

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animales , Ratones , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , FN-kappa B , Humanos
10.
BMC Genomics ; 25(1): 504, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778260

RESUMEN

BACKGROUND: Skeletal muscle development plays a crucial role in yield and quality of pork; however, this process is influenced by various factors. In this study, we employed whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing to comprehensively investigate the longissimus dorsi muscle (LDM), aiming to identify key genes that impact the growth and development of Duroc pigs with different average daily gains (ADGs). RESULTS: Eight pigs were selected and divided into two groups based on ADGs: H (774.89 g) group and L (658.77 g) group. Each pair of the H and L groups were half-siblings. The results of methylation sequencing revealed 2631 differentially methylated genes (DMGs) involved in metabolic processes, signalling, insulin secretion, and other biological activities. Furthermore, a joint analysis was conducted on these DMGs and the differentially expressed genes (DEGs) obtained from transcriptome sequencing of the same individual. This analysis identified 316 differentially methylated and differentially expressed genes (DMEGs), including 18 DMEGs in promoter regions and 294 DMEGs in gene body regions. Finally, LPAR1 and MEF2C were selected as candidate genes associated with muscle development. Bisulfite sequencing PCR (BSP) and quantitative real-time PCR (qRT-PCR) revealed that the promoter region of LPAR1 exhibited significantly lower methylation levels (P < 0.05) and greater expression levels (P < 0.05) in the H group than in the L group. Additionally, hypermethylation was observed in the gene body region of MEF2C, as was a low expression level, in the H group (P < 0.05). CONCLUSIONS: These results suggest that the differences in the ADGs of Duroc pigs fed the same diet may be influenced by the methylation levels and expression levels of genes related to skeletal muscle development.


Asunto(s)
Metilación de ADN , Músculo Esquelético , Transcriptoma , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Porcinos/genética , Epigenoma , Desarrollo de Músculos/genética , Perfilación de la Expresión Génica
11.
J Am Chem Soc ; 146(10): 6481-6486, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421318

RESUMEN

Aspersteroids A and B are novel ergostane-type 18,22-cyclosterols with immunosuppressive and antimicrobial activities. Herein, we report the first synthesis of these two natural products, which was accomplished in 15 and 14 steps, respectively, from commercially available ergosterol by means of a bioinspired divergent approach. Key features of this synthesis include an unprecedented radical relay cyclization that was initiated by iron(II)-mediated decomposition of an alkyl hydroperoxide to construct the E ring cyclopentane motif; a titanium(III)-mediated diastereoselective radical reduction of an epoxide to install the challenging C22 stereocenter; and highly regioselective, divergent late-stage oxidations to access the highly oxidized core framework.


Asunto(s)
Productos Biológicos , Compuestos Epoxi , Ciclización , Oxidación-Reducción , Estereoisomerismo
12.
Eur J Neurosci ; 60(2): 3973-3983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38711292

RESUMEN

A mounting body of evidences suggests that patients with chronic heart failure (HF) frequently experience cognitive impairments, but the neuroanatomical mechanism underlying these impairments remains elusive. In this retrospective study, 49 chronic HF patients and 49 healthy controls (HCs) underwent brain structural MRI scans and cognitive assessments. Cortical morphology index (cortical thickness, complexity, sulcal depth and gyrification) were evaluated. Correlations between cortical morphology and cognitive scores and clinical variables were explored. Logistic regression analysis was employed to identify risk factors for predicting 3-year major adverse cardiovascular events. Compared with HCs, patients with chronic HF exhibited decreased cognitive scores (p < .001) and decreased cortical thickness, sulcal depth and gyrification in brain regions involved cognition, sensorimotor, autonomic nervous system (family-wise error correction, all p values <.05). Notably, HF duration and New York Heart Association (NYHA) demonstrated negative correlations with abnormal cortex morphology, particularly HF duration and thickness in left precentral gyrus (r = -.387, p = .006). Cortical morphology characteristics exhibited positive associations with global cognition, particularly cortical thickness in left pars opercularis (r = .476, p < .001). NYHA class is an independent risk factor for adverse outcome (p = .001). The observed correlation between abnormal cortical morphology and global cognition suggested that cortical morphology may serve as a promising imaging biomarker and provide insights into neuroanatomical underpinnings of cognitive impairment in patients with chronic HF.


Asunto(s)
Corteza Cerebral , Disfunción Cognitiva , Insuficiencia Cardíaca , Imagen por Resonancia Magnética , Humanos , Masculino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Femenino , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Anciano , Estudios Retrospectivos , Enfermedad Crónica
13.
Artículo en Inglés | MEDLINE | ID: mdl-38908733

RESUMEN

BACKGROUND & AIMS: Post-acute COVID-19 syndrome (PACS) is associated with sleep disturbance, but treatment options are limited. The etiology of PACS may be secondary to alterations in the gut microbiome. Here, we report the efficacy of fecal microbiota transplantation (FMT) in alleviating post-COVID insomnia symptoms in a nonrandomized, open-label prospective interventional study. METHODS: Between September 22, 2022, and May 22, 2023, we recruited 60 PACS patients with insomnia defined as Insomnia Severity Index (ISI) ≥8 and assigned them to the FMT group (FMT at weeks 0, 2, 4, and 8; n = 30) or the control group (n = 30). The primary outcome was clinical remission defined by an ISI of <8 at 12 weeks. Secondary outcomes included changes in the Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder-7 scale, Epworth Sleepiness Scale, Multidimensional Fatigue Inventory, blood cortisol and melatonin, and gut microbiome analysis on metagenomic sequencing. RESULTS: At week 12, more patients in the FMT than the control group had insomnia remission (37.9% vs 10.0%; P = .018). The FMT group showed a decrease in ISI score (P < .0001), Pittsburgh Sleep Quality Index (P < .0001), Generalized Anxiety Disorder-7 scale (P = .0019), Epworth Sleepiness Scale (P = .0057), and blood cortisol concentration (P = .035) from baseline to week 12, but there was no significant change in the control group. There was enrichment of bacteria such as Gemmiger formicilis and depletion of microbial pathways producing menaquinol derivatives after FMT. The gut microbiome profile resembled that of the donor in FMT responders but not in nonresponders at week 12. There was no serious adverse event. CONCLUSIONS: This pilot study showed that FMT could be effective and safe in alleviating post-COVID insomnia, and further clinical trials are warranted. CLINICALTRIALS: gov, Number: NCT05556733.

14.
Hum Brain Mapp ; 45(2): e26582, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339904

RESUMEN

Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale /nfemale = 110/106). The outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; RsegATLAS 2 = 65% vs. RsegFS 2 = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R2 = 25%; p < 10-3 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Adulto , Recién Nacido , Lactante , Humanos , Masculino , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Hipotálamo/diagnóstico por imagen
15.
BMC Plant Biol ; 24(1): 340, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671402

RESUMEN

Astragalus mongholicus is a medicinal plant that is known to decrease in quality in response to continuous cropping. However, the differences in the root-associated microbiome and root exudates in the rhizosphere soil that may lead to these decreases are barely under studies. We investigated the plant biomass production, root-associated microbiota, and root exudates of A. mongholicus grown in two different fields: virgin soil (Field I) and in a long-term continuous cropping field (Field II). Virgin soil is soil that has never been cultivated for A. mongholicus. Plant physiological measurements showed reduced fresh and dry weight of A. mongholicus under continuous cropping conditions (i.e. Field II). High-throughput sequencing of the fungal and bacterial communities revealed differences in fungal diversity between samples from the two fields, including enrichment of potentially pathogenic fungi in the roots of A. mongholicus grown in Field II. Metabolomic analysis yielded 20 compounds in A. mongholicus root exudates that differed in relative abundance between rhizosphere samples from the two fields. Four of these metabolites (2-aminophenol, quinic acid, tartaric acid, and maleamate) inhibited the growth of A. mongholicus, the soil-borne pathogen Fusarium oxysporum, or both. This comprehensive analysis enhances our understanding of the A. mongholicus microbiome, root exudates, and interactions between the two in response to continuous cropping. These results offer new information for future design of effective, economical approaches to achieving food security.


Asunto(s)
Microbiota , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología , Planta del Astrágalo/microbiología , Exudados de Plantas/metabolismo , Hongos/genética , Hongos/fisiología , Producción de Cultivos/métodos , Bacterias/genética , Bacterias/metabolismo
16.
Small ; 20(28): e2310519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415911

RESUMEN

Rechargeable aqueous ammonium ion (NH4 +) batteries have attracted much attention due to the unique properties of NH4 +. Polyaniline (PA) with outstanding conductivity is a potential cathode material, but it can be oxidized to pernigraniline (PG) rapidly, resulting in its poor stability. In this study, polyaniline@poly(o-fluoroaniline)@carbon layer (PA@POFA@C) is prepared for excellent and durable NH4 + storage. PA@POFA@C exhibits a high capacity of 208 mAh g-1 at 0.2 A g-1 and maintains 126 mAh g-1 at 10 A g-1. More importantly, an excellent capacity retention rate of 88.24% is achieved after 2000 cycles with ≈100% coulombic efficiency. Spectroscopy studies suggest analogous confinement effect can effectively limit the escape of hydrogen in imine group, and form the hydrogen-restricted region between the PA and POFA layer which can provide H+ for the complete reduction of PG. Meanwhile, the hydrophobic effect of POFA effectively restrains the hydrolysis of PG. Interestingly, the introduction of C layer improves the hydrophilicity of electrode and shortens the activation process, serving as the outermost protective layer of the electrode. Finally, PA@POFA@C achieves desirable electrochemical performances with analogous confinement effect. This research provides ideas for the preparation of advanced polymer electrodes for aqueous NH4 + batteries.

17.
Small ; 20(32): e2310368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511564

RESUMEN

Grain boundaries (GBs) have a significant role in polycrystalline perovskite solar cells (PSCs). However, there is ongoing debate regarding the impact of GBs on the performance and long-term stability of PSCs. Employing the first-principles molecular dynamics for perovskites, the iodine vacancy defect migrations both in bulk and at GBs are investigated. i) The positive iodine vacancy (VI +) is found that have both lower formation energy (1.4 eV) and activation energy (0.18 eV) than those of neutral iodine vacancy (VI), statistically. It indicated the VI + acts as the dominant migrated iodine vacancy rather than VI; ii) the iodine vacancy at GBs has ≈0.48 eV higher activation energy than those in bulk, which leads to the accumulation of iodine vacancy at GBs; iii) the presence of VI + result in a 3-fold increase in charge recombination ratio at GBs, compared to pristine PSCs. Based on quantum molecular dynamics statistical results, which are consistent with experimental measurements, insights into iodine vacancy migration both at GBs and in the bulk are gained. This understanding can be valuable for defects engineering related to ion migration, in order to improve the long-term stability and promote the performance of PSCs.

18.
Small ; 20(20): e2307129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126615

RESUMEN

Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.

19.
Small ; 20(28): e2309321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528424

RESUMEN

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

20.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226779

RESUMEN

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Salvia miltiorrhiza , Hidroxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/enzimología , Polifenoles/metabolismo , Polifenoles/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Alquenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA