Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Hum Biol ; 36(4): e24012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37982356

RESUMEN

BACKGROUND: Diabetes-related dyslipidemia is a multifaceted, complicated disorder characterized by an abnormal lipid profile in individuals with diabetes. The incidence of different types of dyslipidemia, however, was not a focus of prior investigations. The patients were characterized into three categories of dyslipidemia. Different patterns of dyslipidemia were combined into single dyslipidemia (7 patterns), mixed dyslipidemia (16 patterns), and triple dyslipidemia (4 patterns). METHODS: In this cross-sectional study, 586 people suffering from type 2 diabetes mellitus (T2DM) were included. We assessed the serum lipid profile and used log (TG/HDL-C) to determine the atherogenic index of plasma (AIP). Dyslipidemia was examined as a categorical variable, and the findings were presented as percentages and numbers. To compare categorical variables, we either utilized Fisher exact tests or Chi square tests. RESULTS: The study comprised of 586 T2DM patients, with 310 (52.9%) women and 276 (47.1%) men. Women have significantly higher hypertension (33.6%) as compared to men (23.2%). 18.94% (111) of patients were having coronary artery disease (CAD) history consisting of 12.28% (72) females and 6.66% (39) males, a difference which is statistically significant. 98.12% of total individuals had as a minimum of one lipid abnormality. 4.61% (27) of study subjects were having isolated dyslipidemia and 93.51% (548) had dual or triple pattern of dyslipidemia (mixed dyslipidemia). High AIP >0.24 (94.8%) was the most predominant trend of dyslipidemia. The dual combination of AIP (>0.24) and HDL (<50 mg/dL in Females and <40 mg/dL in Males) was found to be the most common pattern of mixed dyslipidemia (68.08%). The most prevalent trend of isolated dyslipidemia was found to be high AIP (>0.24), In patients with CAD history. Among the mixed dyslipidemia, the common pattern of dyslipidemia (71.17%) was the dual combination of high AIP (>0.24) and low HDL (<50 mg/dL women and <40 mg/dL males). The triple combination of TG (≥200 mg/dL) and HDL (<40 and <50 mg/dL) and LDL (≥100 mg/dL) was only found in females. CONCLUSION: In conclusion, dyslipidemia is highly prevalent in T2DM patients, with mixed dyslipidemia being the most common type observed in the community of Kashmir valley, India. High AIP was the most prevalent pattern in the current investigation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Dislipidemias , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/epidemiología , Estudios Transversales , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Dislipidemias/epidemiología , Dislipidemias/etiología , HDL-Colesterol , India/epidemiología , Triglicéridos , Factores de Riesgo
3.
Carcinogenesis ; 38(10): 976-985, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981631

RESUMEN

Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Sumoilación/efectos de la radiación , Cromatina/metabolismo , Cromatina/efectos de la radiación , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Sumoilación/efectos de los fármacos , Rayos Ultravioleta
4.
J Biol Chem ; 291(14): 7396-408, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826127

RESUMEN

Cockayne syndrome group A and B (CSB) proteins act in transcription-coupled repair, a subpathway of nucleotide excision repair. Here we demonstrate that valosin-containing protein (VCP)/p97 segregase functions in ultraviolet radiation (UVR)-induced ubiquitin-mediated CSB degradation. We show that VCP/p97 inhibition and siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 impair CSB degradation. VCP/p97 inhibition also results in the accumulation of CSB in chromatin. Moreover, VCP/p97 interacts with both native and ubiquitin-conjugated forms of CSB. The localized cellular UVR exposures lead to VCP/p97 accumulation at DNA damage spots, forming distinct UVR-induced foci. However, manifestation of VCP/p97 foci is independent of CSB and UBXD7. Furthermore, VCP/p97 and UBXD7 associate with the Cockayne syndrome group A-DDB1-Cul4A complex, an E3 ligase responsible for CSB ubiquitination. Compromising proteasome and VCP/p97 function allows accumulation of both native and ubiquitinated CSB and results in an increase of UBXD7, proteasomal RPN2, and Sug1 in the chromatin compartment. Surprisingly, both biochemical inhibition and genetic defect of VCP/p97 enhance the recovery of RNA synthesis following UVR, whereas both VCP/p97 and proteasome inhibitions decrease cell viability. Our findings reveal a new role of VCP/p97 segregase in the timely processing of ubiquitinated CSB from damaged chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteolisis , Rayos Ultravioleta/efectos adversos , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Cromatina/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinación/genética , Ubiquitinación/efectos de la radiación , Proteína que Contiene Valosina
5.
J Biol Chem ; 289(39): 27278-27289, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25118285

RESUMEN

Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteolisis/efectos de la radiación , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Mutación , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación/genética , Proteína que Contiene Valosina
6.
Nucleic Acids Res ; 41(3): 1722-33, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275565

RESUMEN

Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.


Asunto(s)
Reparación del ADN , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión a CREB/metabolismo , Línea Celular , Cromatina/metabolismo , Cisplatino/toxicidad , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Etopósido/toxicidad , Humanos , Fosforilación , Proteolisis , Radiación Ionizante , Serina/metabolismo , Rayos Ultravioleta , Factores de Transcripción p300-CBP/química
7.
Cells ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272980

RESUMEN

Direct neuronal reprogramming is a promising approach to replace neurons lost due to disease via the conversion of endogenous glia reacting to brain injury into neurons. However, it is essential to demonstrate that the newly generated neurons originate from glial cells and/or show that they are not pre-existing endogenous neurons. Here, we use controls for both requirements while comparing two viral vector systems (Mo-MLVs and AAVs) for the expression of the same neurogenic factor, the phosphorylation-resistant form of Neurogenin2. Our results show that Mo-MLVs targeting proliferating glial cells after traumatic brain injury reliably convert astrocytes into neurons, as assessed by genetic fate mapping of astrocytes. Conversely, expressing the same neurogenic factor in a flexed AAV system results in artefactual labelling of endogenous neurons fatemapped by birthdating in development that are negative for the genetic fate mapping marker induced in astrocytes. These results are further corroborated by chronic live in vivo imaging. Taken together, the phosphorylation-resistant form of Neurogenin2 is more efficient in reprogramming reactive glia into neurons than its wildtype counterpart in vivo using retroviral vectors (Mo-MLVs) targeting proliferating glia. Conversely, AAV-mediated expression generates artefacts and is not sufficient to achieve fate conversion.


Asunto(s)
Astrocitos , Reprogramación Celular , Corteza Cerebral , Dependovirus , Vectores Genéticos , Neuronas , Animales , Astrocitos/metabolismo , Neuronas/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Dependovirus/genética , Reprogramación Celular/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Endogámicos C57BL , Masculino , Retroviridae/genética
8.
Neuron ; 112(12): 1997-2014.e6, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38582081

RESUMEN

Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.


Asunto(s)
Hipocampo , Dinámicas Mitocondriales , Plasticidad Neuronal , Neuronas , Animales , Dinámicas Mitocondriales/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Ratones , Hipocampo/citología , Hipocampo/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Neurogénesis/fisiología , Sinapsis/fisiología , Ratones Endogámicos C57BL
9.
Cell Rep ; 38(7): 110370, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172139

RESUMEN

The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.


Asunto(s)
Células Madre Adultas/metabolismo , Autorrenovación de las Células , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Células-Madre Neurales/metabolismo , Células Madre Adultas/citología , Animales , Proliferación Celular , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Eliminación de Gen , Metaloendopeptidasas/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Células-Madre Neurales/citología , Nucleótidos/metabolismo , Oxidación-Reducción , Proteolisis , Proteoma/metabolismo
10.
Mol Cancer ; 10: 24, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21385444

RESUMEN

BACKGROUND: While platinum-based chemotherapeutic agents are widely used to treat various solid tumors, the acquired platinum resistance is a major impediment in their successful treatment. Since enhanced DNA repair capacity is a major factor in conferring cisplatin resistance, targeting of DNA repair pathways is an effective stratagem for overcoming cisplatin resistance. This study was designed to delineate the role of nucleotide excision repair (NER), the principal mechanism for the removal of cisplatin-induced DNA intrastrand crosslinks, in cisplatin resistance and reveal the impact of DNA repair interference on cisplatin sensitivity in human ovarian cancer cells. RESULTS: We assessed the inherent NER efficiency of multiple matched pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines and their expression of NER-related factors at mRNA and protein levels. Our results showed that only the cisplatin-resistant ovarian cancer cell line PEO4 possessed an increased NER capacity compared to its inherently NER-inefficient parental line PEO1. Several other cisplatin-resistant cell lines, including CP70, CDDP and 2008C13, exhibited a normal and parental cell-comparable NER capacity for removing cisplatin-induced DNA intrastrand cross-links (Pt-GG). Concomitant gene expression analysis revealed discordance in mRNA and protein levels of NER factors in various ovarian cancer cell lines and NER proteins level were unrelated to the cisplatin sensitivity of these cell lines. Although knockdown of NER factors was able to compromise the NER efficiency, it only caused a minimal effect on cisplatin sensitivity. On the contrary, downregulation of BRCA2, a critical protein for homologous recombination repair (HRR), significantly enhanced the efficacy of cisplatin in killing ovarian cancer cell line PEO4. CONCLUSION: Our studies indicate that the level of NER factors in ovarian cancer cell lines is neither a determinant of their NER capacity nor of the sensitivity to cisplatin, and suggest that manipulation of the HRR but not the NER factor expression provides an effective strategy for sensitizing cisplatin-resistant tumors to platinating agents.


Asunto(s)
Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Neoplasias Ováricas/patología , Recombinación Genética/efectos de los fármacos , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Reparación del ADN/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Mutat Res ; 706(1-2): 28-35, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21040738

RESUMEN

The use of innocuous naturally occurring compounds to overcome drug resistance and cancer recalcitrance is now in the forefront of cancer research. Thymoquinone (TQ) is a bioactive constituent of the volatile oil derived from seeds of Nigella sativa Linn. TQ has shown promising anti-carcinogenic and anti-tumor activities through different mechanisms. However, the effect of TQ on cell signaling and survival pathways in resistant cancer cells has not been fully delineated. Here, we report that TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation. TQ treatment increased cellular levels of PTEN proteins, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival. The PTEN expression was accompanied with elevation of PTEN mRNA. TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins. Flow cytometric analysis and agarose gel electrophoresis revealed a significant increase in Sub-G1 cell population and appearance of DNA ladders following TQ treatment, indicating cellular apoptosis. TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells. Moreover, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins. More importantly, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival. Our results reveal that up-regulation of the key upstream signaling factor, PTEN, in MCF-7/DOX cells inhibited Akt phosphorylation, which ultimately causes increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzoquinonas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Benzoquinonas/química , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasas/metabolismo , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Femenino , Fase G2/efectos de los fármacos , Humanos , Estructura Molecular , Fosfohidrolasa PTEN/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
12.
Nucleic Acids Res ; 37(6): 1843-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19188254

RESUMEN

Histone covalent modifications and 26S proteasome-mediated proteolysis modulate many regulatory events in eukaryotes. In Saccharomyces cerevisiae, heterochromatin mediates transcriptional silencing at telomeres, HM loci and rDNA array. Here, we show that proteasome-associated Sem1p and its interacting partner, Ubp6p (a deubiquitinating enzyme), are essential to maintain telomeric silencing. Simultaneous deletion of SEM1 and UBP6 induces dramatic silencing defect accompanied by significantly increased level of ubiquitinated-histone H2B and markedly reduced levels of acetylated-lysine 14 and 23 on histone H3 at the telomeres. Further, the loss of Sem1p and Ubp6p triggers relocation of silencing factors (e.g. Sir proteins) from telomere to HM loci and rDNA array. Such relocation of silencing factors enhances gene silencing at HM loci and rDNA array, but diminishes telomeric silencing. Interestingly, both Sem1p and Ubp6p participate in the proteolytic function of the proteasome. However, we find that the telomeric silencing is not influenced by proteolysis. Taken together, our data demonstrate that Sem1p and Ubp6p maintain telomeric heterochromatin structure (and hence silencing) through modulation of histone covalent modifications and association of silencing factors independently of the proteolytic function of the proteasome, thus offering a new regulatory mechanism of telomeric silencing.


Asunto(s)
Endopeptidasas/metabolismo , Silenciador del Gen , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Ubiquitinación , Acetilación , Regulación Fúngica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae/metabolismo
13.
Cell Cycle ; 20(1): 81-95, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33381997

RESUMEN

Mineralocorticoid and androgen receptor antagonist, spironolactone, was recently identified as an inhibitor of nucleotide excision repair (NER), acting via induction of proteolysis of TFIIH component Xeroderma Pigmentosum B protein (XPB). This activity provides a strong rationale for repurposing spironolactone for cancer therapy. Here, we report that the spironolactone-induced XPB proteolysis is mediated through ubiquitin-selective segregase, valosin-containing protein (VCP)/p97. We show that spironolactone induces a dose- and time-dependent degradation of XPB but not XPD, and that the XPB degradation is blocked by VCP/p97 inhibitors DBeQ, NMS-873, and neddylation inhibitor MLN4924. Moreover, the cellular treatment by VCP/p97 inhibitors leads to the accumulation of ubiquitin conjugates of XPB but not XPD. VCP/p97 knockdown by inducible shRNA does not affect XPB level but compromises the spironolactone-induced XPB degradation. Also, VCP/p97 interacts with XPB upon treatment of spironolactone and proteasome inhibitor MG132, while the VCP/p97 adaptor UBXD7 binds XPB and its ubiquitin conjugates. Additionally, ATP analog-mediated inhibition of Cdk7 significantly decelerates spironolactone-induced XPB degradation. Likewise, engaging TFIIH to NER by UV irradiation slows down spironolactone-induced XPB degradation. These results indicate that the spironolactone-induced XPB proteolysis requires VCP/p97 function and that XPB within holo-TFIIH rather than core-TFIIH is more vulnerable to spironolactone-induced proteolysis. Abbreviations NER: nucleotide excision repair; TFIIH: transcription factor II H; CAK: Cdk-activating kinase (CAK) complex; XPB: Xeroderma Pigmentosum type B; VCP/p97: valosin-containing protein/p97; Cdk7: cyclin-dependent kinase 7; NAE: NEDD8-activating enzyme; IP: immunoprecipitation.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Espironolactona/farmacología , Factor de Transcripción TFIIH/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Proteolisis/efectos de los fármacos , ARN Polimerasa II/metabolismo , Transcripción Genética/efectos de los fármacos
14.
J Biol Chem ; 284(44): 30424-32, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19740755

RESUMEN

Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/fisiología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Línea Celular , Proteínas Cromosómicas no Histona/fisiología , Humanos , Transporte de Proteínas , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta/efectos adversos
15.
DNA Repair (Amst) ; 8(2): 262-73, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19059499

RESUMEN

Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of gammaH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Genoma Humano/genética , Histonas/metabolismo , Ubiquitinación , Proteínas de Ciclo Celular/metabolismo , Factor 1 de Ensamblaje de la Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Complejo Represivo Polycomb 1 , Antígeno Nuclear de Célula en Proliferación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Proteína de Replicación A/metabolismo , Factores de Transcripción , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
16.
Int J Cancer ; 127(4): 977-88, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20013802

RESUMEN

Cisplatin is one of the most widely used anticancer agents, displaying activity against a wide variety of tumors. However, development of drug resistance presents a challenging barrier to successful cancer treatment by cisplatin. To understand the mechanism of cisplatin resistance, we investigated the role of damaged DNA binding protein complex subunit 2 (DDB2) in cisplatin-induced cytotoxicity and apoptosis. We show that DDB2 is not required for the repair of cisplatin-induced DNA damage, but can be induced by cisplatin treatment. DDB2-deficient noncancer cells exhibit enhanced resistance to cell growth inhibition and apoptosis induced by cisplatin than cells with fully restored DDB2 function. Moreover, DDB2 expression in cisplatin-resistant ovarian cancer cell line CP70 and MCP2 was lower than their cisplatin-sensitive parental A2780 cells. Overexpression of DDB2 sensitized CP70 cells to cisplatin-induced cytotoxicity and apoptosis via activation of the caspase pathway and downregulation of antiapoptotic Bcl-2 protein. Further analysis indicates that the overexpression of DDB2 in CP70 cells downregulates Bcl-2 expression through decreasing Bcl-2 mRNA level. These results suggest that ovarian cancer cells containing high level of DDB2 become susceptible to cisplatin by undergoing enhanced apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Neoplasias Ováricas/tratamiento farmacológico , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Cycle ; 19(1): 124-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31775559

RESUMEN

Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Rayos Ultravioleta , Cromatina/metabolismo , Células HCT116 , Células HeLa , Humanos , Poliubiquitina/metabolismo , Unión Proteica , ARN/biosíntesis , Peptidasa Específica de Ubiquitina 7/deficiencia , Proteína que Contiene Valosina/metabolismo
18.
Nucleic Acids Res ; 35(16): 5338-50, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17693435

RESUMEN

The Xeroderma Pigmentosum group C (XPC) protein is indispensable to global genomic repair (GGR), a subpathway of nucleotide excision repair (NER), and plays an important role in the initial damage recognition. XPC can be modified by both ubiquitin and SUMO in response to UV irradiation of cells. Here, we show that XPC undergoes degradation upon UV irradiation, and this is independent of protein ubiquitylation. The subunits of DDB-Cul4A E3 ligase differentially regulate UV-induced XPC degradation, e.g DDB2 is required and promotes, whereas DDB1 and Cul4A protect the protein degradation. Mutation of XPC K655 to alanine abolishes both UV-induced XPC modification and degradation. XPC degradation is necessary for recruiting XPG and efficient NER. The overall results provide crucial insights regarding the fate and role of XPC protein in the initiation of excision repair.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Línea Celular , Cricetinae , Proteínas Cullin/fisiología , Daño del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Endonucleasas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Rayos Ultravioleta
19.
EMBO Mol Med ; 11(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389680

RESUMEN

Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i-AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin-like GTPase OPA1. Mutations in YME1L cause a multi-systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell-type-specific defects in mice lacking YME1L in the nervous system. YME1L-deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Metaloendopeptidasas/deficiencia , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Animales , Catarata/etiología , Catarata/patología , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/metabolismo , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/patología , Ratones , Microftalmía/etiología , Microftalmía/patología , Proteínas Mitocondriales/deficiencia , Médula Espinal/patología
20.
DNA Repair (Amst) ; 6(5): 578-87, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17196446

RESUMEN

The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Células HeLa/efectos de la radiación , Humanos , Inmunoprecipitación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dímeros de Pirimidina , ARN Interferente Pequeño/farmacología , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA