Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878210

RESUMEN

Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.

2.
Basic Res Cardiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046464

RESUMEN

Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.

3.
Strahlenther Onkol ; 199(1): 102-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931890

RESUMEN

We report the case of a 46-year-old woman with Bloom-like syndrome affected with locally advanced cervical cancer. She was treated with induction chemotherapy and radical radiation therapy concurrent with chemotherapy (carboplatin and paclitaxel). She was able to complete treatment, but grade III toxicities were observed. The limited relevant literature is presented. We conclude that the management of patients with DNA repair deficiency is challenging for the team in charge because of the potentially high sensitivity to treatment and the lack of clear recommendations in the literature. The main objective remains to deliver the optimal treatment while reducing toxicities.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias del Cuello Uterino , Femenino , Humanos , Persona de Mediana Edad , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Cuello Uterino/radioterapia , Carboplatino/uso terapéutico , Paclitaxel/uso terapéutico
4.
Crit Care ; 27(1): 282, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434172

RESUMEN

BACKGROUND: Iatrogenic cerebral arterial gas embolism (CAGE) caused by invasive medical procedures may be treated with hyperbaric oxygen therapy (HBOT). Previous studies suggested that initiation of HBOT within 6-8 h is associated with higher probability of favorable outcome, when compared to time-to-HBOT beyond 8 h. We performed a group level and individual patient level meta-analysis of observational studies, to evaluate the relationship between time-to-HBOT and outcome after iatrogenic CAGE. METHODS: We systematically searched for studies reporting on time-to-HBOT and outcome in patients with iatrogenic CAGE. On group level, we meta-analyzed the differences between median time-to-HBOT in patients with favorable versus unfavorable outcome. On individual patient level, we analyzed the relationship between time-to-HBOT and probability of favorable outcome in a generalized linear mixed effects model. RESULTS: Group level meta-analysis (ten studies, 263 patients) shows that patients with favorable outcome were treated with HBOT 2.4 h (95% CI 0.6-9.7) earlier than patients with unfavorable outcome. The generalized linear mixed effects model (eight studies, 126 patients) shows a significant relationship between time-to-HBOT and probability of favorable outcome (p = 0.013) that remains significant after correcting for severity of manifestations (p = 0.041). Probability of favorable outcome decreases from approximately 65% when HBOT is started immediately, to 30% when HBOT is delayed for 15 h. CONCLUSIONS: Increased time-to-HBOT is associated with decreased probability of favorable outcome in iatrogenic CAGE. This suggests that early initiation of HBOT in iatrogenic CAGE is of vital importance.


Asunto(s)
Embolia Aérea , Oxigenoterapia Hiperbárica , Humanos , Cognición , Embolia Aérea/etiología , Embolia Aérea/terapia , Oxigenoterapia Hiperbárica/efectos adversos , Enfermedad Iatrogénica , Modelos Lineales , Estudios Observacionales como Asunto
5.
J Mol Cell Cardiol ; 167: 17-31, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331696

RESUMEN

Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Miocardio/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos
6.
Cardiovasc Diabetol ; 21(1): 45, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303888

RESUMEN

Sodium-glucose-cotransporter 2 inhibitors (SGLT2is) demonstrate large cardiovascular benefit in both diabetic and non-diabetic, acute and chronic heart failure patients. These inhibitors have on-target (SGLT2 inhibition in the kidney) and off-target effects that likely both contribute to the reported cardiovascular benefit. Here we review the literature on direct effects of SGLT2is on various cardiac cells and derive at an unifying working hypothesis. SGLT2is acutely and directly (1) inhibit cardiac sodium transporters and alter ion homeostasis, (2) reduce inflammation and oxidative stress, (3) influence metabolism, and (4) improve cardiac function. We postulate that cardiac benefit modulated by SGLT2i's can be commonly attributed to their inhibition of sodium-loaders in the plasma membrane (NHE-1, Nav1.5, SGLT) affecting intracellular sodium-homeostasis (the sodium-interactome), thereby providing a unifying view on the various effects reported in separate studies. The SGLT2is effects are most apparent when cells or hearts are subjected to pathological conditions (reactive oxygen species, inflammation, acidosis, hypoxia, high saturated fatty acids, hypertension, hyperglycemia, and heart failure sympathetic stimulation) that are known to prime these plasmalemmal sodium-loaders. In conclusion, the cardiac sodium-interactome provides a unifying testable working hypothesis and a possible, at least partly, explanation to the clinical benefits of SGLT2is observed in the diseased patient.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Inflamación , Sodio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos
7.
Amino Acids ; 53(10): 1545-1558, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34590185

RESUMEN

The ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition.


Asunto(s)
Aminoácidos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Abejas/fisiología , Alimentación Animal , Animales , Composición Corporal/efectos de los fármacos , Carbohidratos/farmacología , Ingestión de Alimentos , Femenino , Aptitud Genética , Ovario/fisiología
8.
Cardiovasc Drugs Ther ; 35(4): 745-758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33914182

RESUMEN

PURPOSE: Sonlicromanol is a phase IIB clinical stage compound developed for treatment of mitochondrial diseases. Its active component, KH176m, functions as an antioxidant, directly scavenging reactive oxygen species (ROS), and redox activator, boosting the peroxiredoxin-thioredoxin system. Here, we examined KH176m's potential to protect against acute cardiac ischemia-reperfusion injury (IRI), compare it with the classic antioxidant N-(2-mercaptopropionyl)-glycine (MPG), and determine whether protection depends on duration (severity) of ischemia. METHODS: Isolated C56Bl/6N mouse hearts were Langendorff-perfused and subjected to short (20 min) or long (30 min) ischemia, followed by reperfusion. During perfusion, hearts were treated with saline, 10 µM KH176m, or 1 mM MPG. Cardiac function, cell death (necrosis), and mitochondrial damage (cytochrome c (CytC) release) were evaluated. In additional series, the effect of KH176m treatment on the irreversible oxidative stress marker 4-hydroxy-2-nonenal (4-HNE), formed during ischemia only, was determined at 30-min reperfusion. RESULTS: During baseline conditions, both drugs reduced cardiac performance, with opposing effects on vascular resistance (increased with KH176m, decreased with MPG). For short ischemia, KH176m robustly reduced all cell death parameters: LDH release (0.2 ± 0.2 vs 0.8 ± 0.5 U/min/GWW), infarct size (15 ± 8 vs 31 ± 20%), and CytC release (168.0 ± 151.9 vs 790.8 ± 453.6 ng/min/GWW). Protection by KH176m was associated with decreased cardiac 4-HNE. MPG only reduced CytC release. Following long ischemia, IRI was doubled, and KH176m and MPG now only reduced LDH release. The reduced protection against long ischemia was associated with the inability to reduce cardiac 4-HNE. CONCLUSION: Protection against cardiac IRI by the antioxidant KH176m is critically dependent on duration of ischemia. The data suggest that with longer ischemia, the capacity of KH176m to reduce cardiac oxidative stress is rate-limiting, irreversible ischemic oxidative damage maximally accumulates, and antioxidant protection is strongly diminished.


Asunto(s)
Cromanos/farmacología , Daño por Reperfusión Miocárdica , Oxidación-Reducción/efectos de los fármacos , Aldehídos/metabolismo , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo/efectos de los fármacos , Tiempo de Tratamiento , Tiopronina/farmacología , Resultado del Tratamiento
9.
Cardiovasc Drugs Ther ; 35(6): 1083-1094, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33048256

RESUMEN

PURPOSE: Vascular inflammation and disturbed metabolism are observed in heart failure and type 2 diabetes mellitus. Glycolytic enzyme hexokinase II (HKII) is upregulated by inflammation. We hypothesized that SGLT2 inhibitors Canagliflozin (Cana), Empagliflozin (Empa) or Dapagliflozin (Dapa) reduces inflammation via HKII in endothelial cells, and that HKII-dependent inflammation is determined by ERK1/2, NF-κB. and/or AMPK activity in lipopolysaccharide (LPS)-stimulated human coronary artery endothelial cells (HCAECs). METHODS: HCAECs were pre-incubated with 3 µM or 10 µM Cana, 1 µM, 3 µM or 10 µM Empa or 0.5 µM, 3 µM or 10 µM Dapa (16 h) and subjected to 3 h LPS (1 µg/mL). HKII was silenced via siRNA transfection. Interleukin-6 (IL-6) release was measured by ELISA. Protein levels of HK I and II, ERK1/2, AMPK and NF-κB were detected using infra-red western blot. RESULTS: LPS increased IL-6 release and ERK1/2 phosphorylation; Cana prevented these pro-inflammatory responses (IL-6: pg/ml, control 46 ± 2, LPS 280 ± 154 p < 0.01 vs. control, LPS + Cana 96 ± 40, p < 0.05 vs. LPS). Cana reduced HKII expression (HKII/GAPDH, control 0.91 ± 0.16, Cana 0.71 ± 0.13 p < 0.05 vs. control, LPS 1.02 ± 0.25, LPS + Cana 0.82 ± 0.24 p < 0.05 vs. LPS). Empa and Dapa were without effect on IL-6 release and HKII expression in the model used. Knockdown of HKII by 37% resulted caused partial loss of Cana-mediated IL-6 reduction (pg/ml, control 35 ± 5, LPS 188 ± 115 p < 0.05 vs. control, LPS + Cana 124 ± 75) and ERK1/2 activation by LPS. In LPS-stimulated HCAECs, Cana, but not Empa or Dapa, activated AMPK. AMPK activator A769662 reduced IL-6 release. CONCLUSION: Cana conveys anti-inflammatory actions in LPS-treated HCAECs through 1) reductions in HKII and ERK1/2 phosphorylation and 2) AMPK activation. These data suggest a novel anti-inflammatory mechanism of Cana through HKII.


Asunto(s)
Canagliflozina/farmacología , Vasos Coronarios/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Hexoquinasa/efectos de los fármacos , Mediadores de Inflamación/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Proteínas Quinasas Activadas por AMP , Compuestos de Bencidrilo/farmacología , Relación Dosis-Respuesta a Droga , Glucósidos/farmacología , Humanos , Hipoglucemiantes/farmacología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/efectos de los fármacos
10.
Kidney Blood Press Res ; 46(3): 310-322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077930

RESUMEN

INTRODUCTION: Kidney biopsy remains the gold standard for the diagnosis of most renal diseases. A major obstacle to performing a biopsy is safety concerns. However, many safety measures are not evidence based and therefore vary widely between centers. We sought to determine the rate and timing of kidney biopsy complications in our center, to compare the complication rate between native and transplant kidney biopsies, to evaluate the feasibility of performing kidney biopsies as an outpatient procedure and the value of a postbiopsy ultrasound before discharge, and to identify risk factors for complications. METHODS: We performed a single-center, retrospective, observational study at the Division of Nephrology of the University Hospital Zurich including all patients who underwent renal biopsy between January 2005 and December 2017. Major bleeding (primary outcome) and any other bleeding or nonbleeding complications (secondary outcomes) were compared between native and transplant kidney biopsies and between inpatient and outpatient procedures and correlated with clinical factors possibly affecting bleeding risk. RESULTS: Overall, 2,239 biopsies were performed in 1,468 patients, 732 as inpatient and 1,507 as outpatient procedures. Major bleeding was observed in 28 (3.8%) inpatient and in 15 (1.0%) outpatient procedures, totaling to 43 (1.9%) of all biopsies. Major bleeding requiring intervention amounted to 1.0% (0.5% of outpatient procedures). Rate of major bleeding was similar between native and transplant kidneys. 13/15 (87%) bleeding episodes in planned outpatient procedures were detected during the 4-h surveillance period. Risk factors for bleeding were aspirin use, low eGFR, anemia, cirrhosis, and amyloidosis. Routine postbiopsy ultrasound did not change management. CONCLUSIONS: Kidney biopsy is an overall safe procedure and can be performed as an outpatient procedure in most patients with an observation period as short as 4 h. The value of routine postbiopsy ultrasound is questionable.


Asunto(s)
Biopsia , Enfermedades Renales/diagnóstico , Riñón/patología , Adulto , Anciano , Biopsia/efectos adversos , Femenino , Hemorragia/etiología , Humanos , Enfermedades Renales/patología , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Estudios Retrospectivos
11.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802308

RESUMEN

The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols. Several pharmacological agents have been evaluated in terms of myocardial I/R injury. While results from experimental studies are immensely encouraging, translation into the clinical setting remains unsatisfactory. This narrative review wants to focus on two aspects: (1) give a comprehensive update on new developments of pharmacological conditioning in the experimental setting concentrating on recent literature of the last two years and (2) briefly summarize clinical evidence of these cardioprotective substances in the perioperative setting highlighting their clinical implications. By directly opposing each pharmacological agent regarding its recent experimental knowledge and most important available clinical data, a clear overview is given demonstrating the remaining gap between basic research and clinical practice. Finally, future perspectives are given on how we might overcome the limited translatability in the field of pharmacological conditioning.


Asunto(s)
Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Corazón/efectos de los fármacos , Animales , Humanos , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205045

RESUMEN

SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Compuestos de Bencidrilo/farmacología , Canagliflozina/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Glucósidos/farmacología , Guanidinas/farmacología , Humanos , Inflamación/genética , Inflamación/patología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Estrés Oxidativo/genética , Pirazoles/farmacología , Piridonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Transporte de Sodio-Glucosa/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Intercambiador 1 de Sodio-Hidrógeno/genética , Estrés Mecánico , Sulfonas/farmacología
13.
Environ Microbiol ; 22(8): 3339-3356, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32500958

RESUMEN

Productivity-poor oligotrophic environments are plentiful on earth. Yet it is not well understood how organisms maintain population sizes under these extreme conditions. Most scenarios consider the adaptation of a single microorganism (isogenic) at the cellular level, which increases their fitness in such an environment. However, in oligotrophic environments, the adaptation of microorganisms at population level - that is, the ability of living cells to differentiate into subtypes with specialized attributes leading to the coexistence of different phenotypes in isogenic populations - remains a little-explored area of microbiology research. In this study, we performed experiments to demonstrate that an isogenic population differentiated to two subpopulations under low energy-flux in chemostats. Fluorescence cytometry and turnover rates revealed that these subpopulations differ in their nucleic acid content and metabolic activity. A mechanistic modelling framework for the dynamic adaptation of microorganisms with the consideration of their ability to switch between different phenotypes was experimentally calibrated and validated. Simulation of hypothetical scenarios suggests that responsive diversification upon a change in energy availability offers a competitive advantage over homogenous adaptation for maintaining viability and metabolic activity with time.


Asunto(s)
Adaptación Fisiológica/fisiología , Especiación Genética , Micrococcaceae , Simulación por Computador , Metabolismo Energético/fisiología , Micrococcaceae/citología , Micrococcaceae/crecimiento & desarrollo , Micrococcaceae/metabolismo , Fenotipo
14.
Vox Sang ; 115(5): 395-404, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32166810

RESUMEN

BACKGROUND AND OBJECTIVES: Red-blood-cell (RBC) transfusion is associated with lung injury, which is further exacerbated by mechanical ventilation. Manufacturing methods of blood products differ globally and may play a role in the induction of pulmonary cell activation through alteration of the immunomodulatory property of the products. Here, the effect of different manufacturing methods on pulmonary cell activation was investigated in an in vitro model of mechanical ventilation. MATERIALS AND METHODS: Pulmonary type II cells were incubated with supernatant from fresh and old RBC products obtained via whole blood filtration (WBF), red cell filtration (RCF), apheresis-derived (AD) or whole blood-derived (WBD) methods. Lung cells were subjected to 25% stretch for 24 h. Controls were non-stretched or non-incubated cells. RESULTS: Fresh but not old AD products and WBF products induce lung cell production of pro-inflammatory cytokines and chemokines, which was not observed with WBD or RCF products. Effects were associated with an increased amount of platelet-derived vesicles and an increased thrombin-generating capacity. Mechanical stretching of lung cells induced more severe cell injury compared to un-stretched controls, including alterations in the cytoskeleton, which was further augmented by incubation with AD products. In all read-out parameters, RCF products seemed to induce less injury compared to the other products. CONCLUSIONS: Our findings show that manufacturing methods of RBC products impact pulmonary cell activation, which may be mediated by the generation of vesicles in the product. We suggest RBC manufacturing method may be an important factor in understanding the association between RBC transfusion and lung injury.


Asunto(s)
Conservación de la Sangre , Transfusión de Eritrocitos/efectos adversos , Inflamación , Pulmón/patología , Citocinas , Eritrocitos , Humanos , Respiración Artificial , Trombina
15.
Anesth Analg ; 131(6): 1765-1780, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186163

RESUMEN

Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.


Asunto(s)
Cardiotónicos/administración & dosificación , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Atención Perioperativa/métodos , Complicaciones Posoperatorias/prevención & control , Analgésicos Opioides/administración & dosificación , Humanos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Inhibidores de Fosfodiesterasa 3/administración & dosificación , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología
16.
Ann Vasc Surg ; 63: 461.e1-461.e5, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629856

RESUMEN

A 70-year-old man was scheduled for the robotic resection of a 21×16 × 30 mm thymic nodule incidentally detected by a computed tomography scan (CT) for thoracic trauma after a domestic accident. Positron emission tomography (PET) scan confirmed a low [18F]-FDG uptake (SUVmax = 1,9). During the surgery, the mass showed to be a saccular aneurysm of the left brachiocephalic vein (LBCV). A complete tangential resection of the aneurysm, with the use of EndoGIA stapler (Covidien® Endo GIA™) at its origin, was performed. The patient's recovery was uneventful, and postoperative CT with contrast administration confirmed the patency of the vein.


Asunto(s)
Aneurisma/cirugía , Venas Braquiocefálicas/cirugía , Tomografía de Emisión de Positrones , Procedimientos Quirúrgicos Robotizados , Grapado Quirúrgico , Timoma/diagnóstico por imagen , Neoplasias del Timo/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Lesiones del Sistema Vascular/cirugía , Anciano , Aneurisma/diagnóstico por imagen , Venas Braquiocefálicas/diagnóstico por imagen , Diagnóstico Diferencial , Errores Diagnósticos , Humanos , Hallazgos Incidentales , Masculino , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Lesiones del Sistema Vascular/diagnóstico por imagen
18.
Cell Physiol Biochem ; 53(5): 865-886, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31724838

RESUMEN

BACKGROUND/AIMS: Heart failure is characterized by chronic low-grade vascular inflammation, which in itself can lead to endothelial dysfunction. Clinical trials showed reductions in heart failure-related hospitalizations of type 2 diabetic patients using sodium glucose co-transporter 2 inhibitors (SGLT2i's). Whether and how SGLT2i's directly affect the endothelium under inflammatory conditions is not completely understood. The aim of the study was to investigate whether the SGLT2i Empagliflozin (EMPA) and Dapagliflozin (DAPA) reduce tumor necrosis factor α (TNFα) induced endothelial inflammation in vitro. METHODS: Human coronary arterial endothelial cells (HCAECs) and human umbilical vein endothelial cells (HUVECs) were (pre-)incubated with 1 µM EMPA or DAPA and subsequently exposed to 10 ng/ml TNFα. ROS and NO were measured using live cell imaging. Target proteins were either determined by infrared western blotting or fluorescence activated cell sorting (FACS). The connection between Cav-1 and eNOS was determined by co-immunoprecipitation. RESULTS: Nitric oxide (NO) bioavailability was reduced by TNFα and both EMPA and DAPA restored NO levels in TNFα-stimulated HCAECs. Intracellular ROS was increased by TNFα, and this increase was completely abolished by EMPA and DAPA in HCAECs by means of live cell imaging. eNOS signaling was significantly disturbed after 24 h when cells were exposed to TNFα for 24h, yet the presence of both SGLT2is did not prevent this disruption. TNFα-induced enhanced permeability at t=24h was unaffected in HUVECs by EMPA. Similarly, adhesion molecule expression (VCAM-1 and ICAM-1) was elevated after 4h TNFα (1.5-5.5 fold increase of VCAM-1 and 4-12 fold increase of ICAM-1) but were unaffected by EMPA and DAPA in both cell types. Although we detected expression of SGLT2 protein levels, the fact that we could not silence this expression by means of siRNA and the mRNA levels of SGLT2 were not detectable in HCAECs, suggests aspecificity or our SGLT2 antibody and absence of SGLT2 in our cells. CONCLUSION: These data suggest that EMPA and DAPA rather restore NO bioavailability by inhibiting ROS generation than by affecting eNOS expression or signaling, barrier function and adhesion molecules expression in TNFα-induced endothelial cells. Furthermore, the observed effects cannot be ascribed to the inhibition of SGLT2 in endothelial cells.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Regulación hacia Abajo/efectos de los fármacos , Glucósidos/farmacología , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Vasos Coronarios/citología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Permeabilidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Molécula 1 de Adhesión Celular Vascular
19.
Cardiovasc Drugs Ther ; 33(3): 297-306, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31025141

RESUMEN

PURPOSE: Remote ischemic preconditioning protects peripheral organs against prolonged ischemia/reperfusion injury via circulating protective factors. Preconditioning with helium protected healthy volunteers against postischemic endothelial dysfunction. We investigated whether plasma from helium-treated volunteers can protect human umbilical vein endothelial cells (HUVECs) against hypoxia in vitro through release of circulating of factors. METHODS: Healthy male volunteers inhaled heliox (79% helium, 21% oxygen) or air for 30 min. Plasma was collected at baseline, directly after inhalation, 6 h and 24 h after start of the experiment. HUVECs were incubated with either 5% or 10% of the plasma for 1 or 2 h and subjected to enzymatically induced hypoxia. Cell damage was measured by LDH content. Furthermore, caveolin 1 (Cav-1), hypoxia-inducible factor (HIF1α), extracellular signal-regulated kinase (ERK)1/2, signal transducer and activator of transcription (STAT3) and endothelial nitric oxide synthase (eNOS) were determined. RESULTS: Prehypoxic exposure to 10% plasma obtained 6 h after helium inhalation decreased hypoxia-induced cell damage in HUVEC. Cav-1 knockdown in HUVEC abolished this effect. CONCLUSIONS: Plasma of healthy volunteers breathing helium protects HUVEC against hypoxic cell damage, possibly involving circulating Cav-1.


Asunto(s)
Helio/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Oxígeno/administración & dosificación , Plasma/metabolismo , Administración por Inhalación , Adulto , Caveolina 1/genética , Caveolina 1/metabolismo , Hipoxia de la Célula , Células Cultivadas , Voluntarios Sanos , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA