Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(6): e202400019, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311594

RESUMEN

Stable isotope labeling is an extremely useful tool for characterizing the structure, tracing the metabolism, and imaging the distribution of natural products in living organisms using mass-sensitive measurement techniques. In this study, a cyanobacterium was cultured in 15 N/13 C-enriched media to endogenously produce labeled, bioactive oligopeptides. The extent of heavy isotope incorporation in these peptides was determined with LC-MS, while the overall extent of heavy isotope incorporation in whole cells was studied with nanoSIMS and AFM-IR. Up to 98 % heavy isotope incorporation was observed in labeled cells. Three of the most abundant peptides, microcystin-LR (MCLR), cyanopeptolin-A (CYPA), and aerucyclamide-A (ACAA), were isolated and further studied with Raman and FTIR spectroscopies and DFT calculations. This revealed several IR and Raman active vibrations associated with functional groups not common in ribosomal peptides, like diene, ester, thiazole, thiazoline, and oxazoline groups, which could be suitable for future vibrational imaging studies. More broadly, this study outlines a simple and relatively inexpensive method for producing heavy-labeled natural products. Manipulating the bacterial culture conditions by the addition of specific types and amounts of heavy-labeled nutrients provides an efficient means of producing heavy-labeled natural products for mass-sensitive imaging studies.


Asunto(s)
Productos Biológicos , Cianobacterias , Vibración , Péptidos/química , Isótopos , Marcaje Isotópico/métodos
2.
J Synchrotron Radiat ; 31(Pt 2): 303-311, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385277

RESUMEN

X-ray and electron scattering from free gas-phase molecules is examined using the independent atom model (IAM) and ab initio electronic structure calculations. The IAM describes the effect of the molecular geometry on the scattering, but does not account for the redistribution of valence electrons due to, for instance, chemical bonding. By examining the total, i.e. energy-integrated, scattering from three molecules, fluoroform (CHF3), 1,3-cyclohexadiene (C6H8) and naphthalene (C10H8), the effect of electron redistribution is found to predominantly reside at small-to-medium values of the momentum transfer (q ≤ 8 Å-1) in the scattering signal, with a maximum percent difference contribution at 2 ≤ q ≤ 3 Å-1. A procedure to determine the molecular geometry from the large-q scattering is demonstrated, making it possible to more clearly identify the deviation of the scattering from the IAM approximation at small and intermediate q and to provide a measure of the effect of valence electronic structure on the scattering signal.

3.
New Phytol ; 242(4): 1661-1675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38358052

RESUMEN

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Asunto(s)
Carbono , Minerales , Micorrizas , Micorrizas/fisiología , Carbono/metabolismo , Minerales/metabolismo , Cadena Alimentaria , Hifa , Microbiología del Suelo , Isótopos de Carbono , Avena/microbiología , Compuestos Orgánicos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Raíces de Plantas/microbiología , Suelo/química
4.
Phys Chem Chem Phys ; 26(3): 2568-2579, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170862

RESUMEN

High-lying electronic states hold the potential for new and unusual photochemical reactions. However, for conventional single-photon excitation in the condensed phase, reaching these states is often not possible because the vacuum-ultraviolet (VUV) light required is competitively absorbed by the surrounding matrix rather than the molecule of interest. Here, this hurdle is overcome by leveraging nonresonant two-photon absorption (2PA) at 265 nm to achieve preferential photolysis of tetrahydrofuran (THF) trapped within a clathrate hydrate network at 77 K. Electron spin resonance (ESR) spectroscopy enables direct observation and identification of otherwise short-lived organic radicals stabilized by the clathrate cages, providing clues into the rapid dynamics that immediately follow photoexcitation. 2PA induces extensive fragmentation of enclathrated THF yielding 1-alkyl, acyl, allyl and methyl radicals-a stark departure from the reactive motifs commonly reported in γ-irradiated hydrates. We speculate on the undetected transient dynamics and explore the potential role of trapped electrons generated from water and THF. This demonstration of nonresonant two-photon chemistry presents an alternative approach to targeted condensed phase photochemistry in the VUV energy range.

5.
J Phys Chem A ; 128(25): 4992-4998, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38709555

RESUMEN

The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.

6.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38349638

RESUMEN

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

7.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947814

RESUMEN

Intramolecular charge transfer and the associated changes in molecular structure in N,N'-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon-carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon-carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps.

8.
Eur Arch Otorhinolaryngol ; 281(9): 4635-4639, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38698162

RESUMEN

PURPOSE: Otoacoustic emissions (OAE) are a common screening tool to evaluate cochlear function. Middle ear dysfunction has been shown to impact results of otoacoustic emission testing, but there are limited data on the effect of tympanostomy tubes on OAE. The purpose of this study was to determine whether tympanostomy tube placement significantly improved OAE. METHODS: A retrospective review of charts was completed for patients younger than 18 years old who underwent tympanostomy tube placement from January 1, 2018 to September 1, 2023 and had preoperative and postoperative OAE testing within 6 months of surgery. The primary variable was presence of OAE preoperatively and postoperatively. Chi-square analysis and t test were used for statistical analysis. RESULTS: A total of 212 ears were examined from 111 pediatric patients who underwent tympanostomy tube placement during the study period. Presence of OAE at 3000, 4000, and 5000 Hz were all noted to significantly increase following tympanostomy tube placement, with OAE presence increasing from approximately 27.8% of the sample preoperatively to 95.3% postoperatively at 3000 and 4000 Hz. Patients who noted improvement had a significantly higher proportion of type B tympanogram preoperatively, compared to a higher proportion of type A tympanogram noted in patients who did not note improvement. CONCLUSION: Tympanostomy tubes can significantly improve otoacoustic emissions in patients with middle ear dysfunction.


Asunto(s)
Ventilación del Oído Medio , Emisiones Otoacústicas Espontáneas , Humanos , Emisiones Otoacústicas Espontáneas/fisiología , Estudios Retrospectivos , Femenino , Masculino , Niño , Preescolar , Adolescente , Lactante
9.
Plant J ; 111(4): 995-1014, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699388

RESUMEN

Even subtle modifications in growth conditions elicit acclimation responses affecting the molecular and elemental makeup of organisms, both in the laboratory and in natural habitats. We systematically explored the effect of temperature, pH, nutrient availability, culture density, and access to CO2 and O2 in laboratory-grown algal cultures on growth rate, the ionome, and the ability to accumulate Fe. We found algal cells accumulate Fe in alkaline conditions, even more so when excess Fe is present, coinciding with a reduced growth rate. Using a combination of Fe-specific dyes, X-ray fluorescence microscopy, and NanoSIMS, we show that the alkaline-accumulated Fe was intracellularly sequestered into acidocalcisomes, which are localized towards the periphery of the cells. At high photon flux densities, Zn and Ca specifically over-accumulate, while Zn alone accumulates at low temperatures. The impact of aeration was probed by reducing shaking speeds and changing vessel fill levels; the former increased the Cu quota of cultures, the latter resulted in a reduction in P, Ca, and Mn at low fill levels. Trace element quotas were also affected in the stationary phase, where specifically Fe, Cu, and Zn accumulate. Cu accumulation here depends inversely on the Fe concentration of the medium. Individual laboratory strains accumulate Ca, P, and Cu to different levels. All together, we identified a set of specific changes to growth rate, elemental composition, and the capacity to store Fe in response to subtle differences in culturing conditions of Chlamydomonas, affecting experimental reproducibility. Accordingly, we recommend that these variables be recorded and reported as associated metadata.


Asunto(s)
Chlamydomonas , Oligoelementos , Reproducibilidad de los Resultados
10.
Environ Microbiol ; 25(3): 689-704, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478085

RESUMEN

Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.


Asunto(s)
Archaea , Carbono , Archaea/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Urea/metabolismo , Nitrógeno/metabolismo
11.
Faraday Discuss ; 244(0): 269-293, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37132432

RESUMEN

The photoinduced ring-conversion reaction when cyclopentadiene (CP) is excited at 5.10 eV is simulated using surface-hopping semiclassical trajectories with XMS(3)-CASPT2(4,4)/cc-pVDZ electronic structure theory. In addition, PBE0/def2-SV(P) is employed for ground state propagation of the trajectories. The dynamics is propagated for 10 ps, mapping both the nonadiabatic short-time dynamics (<300 fs) and the increasingly statistical dynamics on the electronic ground state. The short-time dynamics yields a mixture of hot CP and bicyclo[2.1.0]pentene (BP), with the two products reached via different regions of the same conical intersection seam. On the ground state, we observe slow conversion from BP to CP which is modelled by RRKM theory with a transition state determined using PBE0/def2-TZVP. The CP products are furthermore associated with ground state hydrogen shifts and some H-atom dissociation. Finally, the prospects for detailed experimental mapping using novel ultrafast X-ray scattering experiments are discussed and observables for such experiments are predicted. In particular, we assess the possibility of retrieving electronic states and their populations alongside the structural dynamics.

12.
EMBO Rep ; 22(7): e51289, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34056831

RESUMEN

The recruitment of thermogenic brite adipocytes within white adipose tissue attenuates obesity and metabolic comorbidities, arousing interest in understanding the underlying regulatory mechanisms. The molecular network of brite adipogenesis, however, remains largely unresolved. In this light, long noncoding RNAs (lncRNAs) emerged as a versatile class of modulators that control many steps within the differentiation machinery. Leveraging the naturally varying propensities of different inbred mouse strains for white adipose tissue browning, we identify the nuclear lncRNA Ctcflos as a pivotal orchestrator of thermogenic gene expression during brite adipocyte differentiation. Mechanistically, Ctcflos acts as a pleiotropic regulator, being essential for the transcriptional recruitment of the early core thermogenic regulatory program and the modulation of alternative splicing to drive brite adipogenesis. This is showcased by Ctcflos-regulated gene transcription and splicing of the key browning factor Prdm16 toward the isoform that is specific for the thermogenic gene program. Conclusively, our findings emphasize the mechanistic versatility of lncRNAs acting at several independent levels of gene expression for effective regulation of key differentiation factors to direct cell fate and function.


Asunto(s)
Adipogénesis , ARN Largo no Codificante , Adipogénesis/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Empalme Alternativo , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Termogénesis
13.
Pediatr Neurosurg ; 58(3): 128-135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075708

RESUMEN

INTRODUCTION: The aim of this cohort study was to assess the outcome of single-level selective dorsal rhizotomy (SDR) in children and young adults with spastic cerebral palsy (CP) treated at our institution, focusing on patient-reported outcome measures (PROMs) and quality of life (QoL) of patients and their caregivers. METHODS: We included consecutive patients undergoing SDR from 2018 to 2020 at our institution. Subjective outcome was measured through PROMs, while functional outcome was measured through baseline characteristics, operative outcome, as well as short- and long-term follow-up. Furthermore, the effect of age at the time of surgery on patient/caregiver satisfaction was analyzed. RESULTS: Seven patients (3 female, 43%) with a median age at surgery of 11.9 years (IQR 8.7-15.5) were included. All patients had a Gross Motor Function Classification (GMFCS) score of at least IV before surgery. Five surgeries were palliative and two non-palliative. Based on PROMs, SDR showed very good QoL and health-related outcome measures for both palliative and non-palliative patients. Patient/caregiver satisfaction was higher for the early subgroup (age ≤11) than the late subgroup (age >11). Functional outcome showed reduced spasticity in both groups. Blood transfusions were never needed, while no cerebrospinal fluid leak, infection, or permanent morbidity was seen. CONCLUSION: Based on PROMs, SDR leads to high satisfaction and improved QoL, especially if done at an early age. Further studies with larger cohorts are necessary to underline and confirm our observations.


Asunto(s)
Parálisis Cerebral , Rizotomía , Niño , Humanos , Femenino , Adulto Joven , Adolescente , Calidad de Vida , Cuidadores , Estudios de Cohortes , Parálisis Cerebral/cirugía , Resultado del Tratamiento , Medición de Resultados Informados por el Paciente
14.
J Environ Manage ; 344: 118677, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556895

RESUMEN

Soils host diverse communities of microorganisms essential for ecosystem functions and soil health. Despite their importance, microorganisms are not covered by legislation protecting biodiversity or habitats, such as the Habitats Directive. Advances in molecular methods have caused breakthroughs in microbial community analysis, and recent studies have shown that parts of the communities are habitat-specific. If distinct microbial communities are present in the habitat types defined in the Habitats Directive, the Directive may be improved by including these communities. Thus, monitoring and reporting of biodiversity and conservation status of habitat types could be based not only on plant communities but also on microbial communities. In the present study, bacterial and plant communities were examined in six habitat types defined in the Habitats Directive by conducting botanical surveys and collecting soil samples for amplicon sequencing across 19 sites in Denmark. Furthermore, selected physico-chemical properties expected to differ between habitat types and explain variations in community composition of bacteria and vegetation were analysed (pH, electrical conductivity (EC), soil texture, soil water repellency, soil organic carbon content (OC), inorganic nitrogen, and in-situ water content (SWC)). Despite some variations within the same habitat type and overlaps between habitat types, habitat-specific communities were observed for both bacterial and plant communities, but no correlation was observed between the alpha diversity of vegetation and bacteria. PERMANOVA analysis was used to evaluate the variables best able to explain variation in the community composition of vegetation and bacteria. Habitat type alone could explain 46% and 47% of the variation in bacterial and plant communities, respectively. Excluding habitat type as a variable, the best model (pH, SWC, OC, fine silt, and Shannon's diversity index for vegetation) could explain 37% of the variation for bacteria. For vegetation, the best model (pH, EC, ammonium content and Shannon's diversity index for bacteria) could explain 25% of the variation. Based on these results, bacterial communities could be included in the Habitats Directive to improve the monitoring, as microorganisms are more sensitive to changes in the environment compared to vegetation, which the current monitoring is based on.


Asunto(s)
Ecosistema , Microbiota , Carbono/análisis , Suelo/química , Microbiología del Suelo , Biodiversidad , Plantas , Agua/análisis , Bacterias/genética
15.
Lab Invest ; 102(12): 1400-1405, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36045222

RESUMEN

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) allows spatial analysis of proteins, metabolites, or small molecules from tissue sections. Here, we present the simultaneous generation and analysis of MALDI-MSI, whole-exome sequencing (WES), and RNA-sequencing data from the same formalin-fixed paraffin-embedded (FFPE) tissue sections. Genomic DNA and total RNA were extracted from (i) untreated, (ii) hematoxylin-eosin (HE) stained, and (iii) MALDI-MSI-analyzed FFPE tissue sections from three head and neck squamous cell carcinomas. MALDI-MSI data were generated by a time-of-flight analyzer prior to preprocessing and visualization. WES data were generated using a low-input protocol followed by detection of single-nucleotide variants (SNVs), tumor mutational burden, and mutational signatures. The transcriptome was determined using 3'-RNA sequencing and was examined for similarities and differences between processing stages. All data met the commonly accepted quality criteria. Besides SNVs commonly identified between differently processed tissues, FFPE-typical artifactual variants were detected. Tumor mutational burden was in the same range for tissues from the same patient and mutational signatures were highly overlapping. Transcriptome profiles showed high levels of correlation. Our data demonstrate that simultaneous molecular profiling of MALDI-MSI-processed FFPE tissue sections at the transcriptome and exome levels is feasible and reliable.


Asunto(s)
Exoma , Neoplasias , Humanos , Adhesión en Parafina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fijación del Tejido/métodos , Exoma/genética , Formaldehído/química , Secuenciación del Exoma , Perfilación de la Expresión Génica , Biomarcadores de Tumor , ARN
16.
Biochem Biophys Res Commun ; 618: 46-53, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714570

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and liver fibrosis emerge as progressive liver diseases that accompany metabolic syndrome usually characterized by obesity, insulin resistance and type 2 diabetes. Currently no FDA approved treatments exist for the treatment of NASH and liver fibrosis, which requires a better knowledge of the underlying molecular mechanisms. TSC22D4 belongs to the TSC-22 protein family, the members of which are regulated by inflammatory and stress signals. Interestingly, patients with type 2 diabetes, with NAFLD as well as with NASH all have elevated levels of hepatic TSC22D4 expression. Previous studies with targeted deletion of TSC22D4 specifically in hepatocytes showed that TSC22D4 not only acts as a critical controller of diabetic hyperglycemia, but also contributes to NAFLD/NASH progression. To gain better insight into the development of progressive liver diseases, here we studied the function of TSC22D4 in hepatic stellate cells (HSCs), which play a key role in the pathogenesis of liver fibrosis. Our results indicated that TSC22D4 contributes to TGFß1-mediated activation of HSCs and promotes their proliferation and migration. RNA-Sequencing analysis revealed that TSC22D4 initiates transcriptional events associated with HSC activation. Overall, our findings establish TSC22D4 as a key hub in the development of liver fibrosis, acting across different cellular compartments. Combinatorial TSC22D4 targeting in both hepatocytes and HSC may thus show superior efficacy against progressive liver disease.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Factores de Transcripción , Factor de Crecimiento Transformador beta1 , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
17.
New Phytol ; 236(1): 210-221, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35633108

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat. We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants. Plants grown with AMF that had access to a physically separated compartment containing 18 O-labeled water transpired almost twice as much as plants with AMF excluded from that compartment. Using an isotopic mixing model, we estimated that water transported by AMF across the air gap accounted for 34.6% of the water transpired by host plants. In addition, a fluorescent dye indicated that hyphae were able to transport some water via an extracytoplasmic pathway. Our study provides direct evidence that AMF can act as extensions of the root system along the soil-plant-air continuum of water movement, with plant transpiration driving water flow along hyphae outside of the hyphal cell membrane.


Asunto(s)
Micorrizas , Colorantes Fluorescentes/metabolismo , Hongos , Hifa/metabolismo , Micorrizas/fisiología , Raíces de Plantas/microbiología , Plantas/microbiología
18.
Glob Chang Biol ; 28(8): 2527-2540, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34989058

RESUMEN

Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.


Asunto(s)
Hifa , Suelo , Bacterias , Carbono , Minerales , Rizosfera , Suelo/química , Microbiología del Suelo
19.
Limnol Oceanogr ; 67(7): 1470-1483, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36248197

RESUMEN

Cyanobacterial biomass forecasts currently cannot predict the concentrations of microcystin, one of the most ubiquitous cyanotoxins that threaten human and wildlife health globally. Mechanistic insights into how microcystin production and biodegradation by heterotrophic bacteria change spatially and throughout the bloom season can aid in toxin concentration forecasts. We quantified microcystin production and biodegradation during two growth seasons in two western Lake Erie sites with different physicochemical properties commonly plagued by summer Microcystis blooms. Microcystin production rates were greater with elevated nutrients than under ambient conditions and were highest nearshore during the initial phases of the bloom, and production rates were lower in later bloom phases. We examined biodegradation rates of the most common and toxic microcystin by adding extracellular stable isotope-labeled microcystin-LR (1 µg L-1), which remained stable in the abiotic treatment (without bacteria) with minimal adsorption onto sediment, but strongly decreased in all unaltered biotic treatments, suggesting biodegradation. Greatest biodegradation rates (highest of -8.76 d-1, equivalent to the removal of 99.98% in 18 h) were observed during peak bloom conditions, while lower rates were observed with lower cyanobacteria biomass. Cell-specific nitrogen incorporation from microcystin-LR by nanoscale imaging mass spectrometry showed that a small percentage of the heterotrophic bacterial community actively degraded microcystin-LR. Microcystin production and biodegradation rates, combined with the microcystin incorporation by single cells, suggest that microcystin predictive models could be improved by incorporating toxin production and biodegradation rates, which are influenced by cyanobacterial bloom stage (early vs. late bloom), nutrient availability, and bacterial community composition.

20.
Environ Sci Technol ; 56(3): 1994-2008, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029104

RESUMEN

Imaging biogeochemical interactions in complex microbial systems─such as those at the soil-root interface─is crucial to studies of climate, agriculture, and environmental health but complicated by the three-dimensional (3D) juxtaposition of materials with a wide range of optical properties. We developed a label-free multiphoton nonlinear imaging approach to provide contrast and chemical information for soil microorganisms in roots and minerals with epi-illumination by simultaneously imaging two-photon excitation fluorescence (TPEF), coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and sum-frequency mixing (SFM). We used fluorescence lifetime imaging (FLIM) and time gating to correct CARS for the autofluorescence background native to soil particles and fungal hyphae (TG-CARS) using time-correlated single-photon counting (TCSPC). We combined TPEF, TG-CARS, and FLIM to maximize image contrast for live fungi and bacteria in roots and soil matrices without fluorescence labeling. Using this instrument, we imaged symbiotic arbuscular mycorrhizal fungi (AMF) structures within unstained plant roots in 3D to 60 µm depth. High-quality imaging was possible at up to 30 µm depth in a clay particle matrix and at 15 µm in complex soil preparation. TG-CARS allowed us to identify previously unknown lipid droplets in the symbiotic fungus, Serendipita bescii. We also visualized unstained putative bacteria associated with the roots of Brachypodium distachyon in a soil microcosm. Our results show that this multimodal approach holds significant promise for rhizosphere and soil science research.


Asunto(s)
Micorrizas , Suelo , Minerales , Rizosfera , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA