Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(25): 11745-11756, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38865684

RESUMEN

Piezo-photocatalytic efficiency is severely constrained by the wide band gap and bad piezoelectric properties. Herein, La(Mn0.5Ni0.5)O3 was successfully introduced into NaNbO3 lattices (referred to as 0LMN, 0.05LMN, 0.10LMN, and 0.15LMN) through a water-based sol-gel method. The piezo-photocatalytic degradation ratio for Rhodamine B (RhB) is enhanced from 59.7% (0LMN) to 89.7% (0.10LMN) within 100 min, and the kinetic rate constant (k) is increased from 0.009 to 0.022 min-1. The enhanced performance is attributed to (i) the narrowed band gap (from 3.40 to 2.84 eV), which is conducive to the generation of photogenerated electrons and holes, and (ii) the enhanced piezoelectric properties, which can strengthen the piezoelectric polarization, thereby accelerating the separation of the photogenerated electrons and holes. And we also found that the synergetic effect of photocatalysis and piezocatalysis was superior to that of photocatalysis and piezocatalysis alone. This study could provide new perspectives for the reasonable construction of an efficient catalyst in the piezo-photocatalytic field.

2.
Org Biomol Chem ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993172

RESUMEN

Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both ß1-3-galactosyltransferase and ß1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcß3Galα/ßOR and Galß3GalNAcα/ßOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.

3.
Acta Pharmacol Sin ; 44(1): 157-168, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35655095

RESUMEN

Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.


Asunto(s)
Hígado Graso , Hepatopatías Alcohólicas , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Etanol/toxicidad , Hígado Graso/inducido químicamente , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factores de Crecimiento Nervioso/metabolismo , Proteómica , Urea/metabolismo
4.
Environ Res ; 201: 111510, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147466

RESUMEN

Electro-dewatering of sludge has received considerable attention due to its low energy consumption for sludge deep-dewatering. However, prior studies have shown the resistance of dried sludge near anode significantly hinders electro-dewatering. The dewatering performance may be improved by reducing the resistance with the addition of conductive material into sludge. We conditioned municipal sludge by anthracite powder, an inexpensive product, to increase solid conductivity, followed by electro-dewatering. After running for 20 min under a constant voltage of 30 V, when the anthracite powder mass was 10%-22% of raw sludge dry solids mass (DS), the final dry solids content of the mud cake after dehydration was 6.2%-12.9% higher than that from dehydration of unconditioned sludge. The average filtrate flow rate ranged from 0.0243 to 0.0285 g s-1. The lowest unit energy consumption, 0.19 kW h·kgwater-1, which was 14% lower than that of control, was reached when 18% DS of anthracite was added. Our theoretical analysis indicates that properly increasing solid conductivity of sludge can reduce the adverse effect caused by the high electrical resistance of sludge near anode. The experimental results, along with the theoretical analysis, show that using anthracite powder for sludge modification is an economical approach to improve sludge dewatering rate and reduce energy consumption.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Carbón Mineral , Polvos , Aguas Residuales , Agua
5.
Environ Res ; 186: 109487, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32334167

RESUMEN

The efficiency of common sludge electro-dewatering (EDW) is restrained by the following issues: 1, the near-anode sludge dries out quickly, causing a rapid increase in electrical resistance; 2, the pH at anode decreases by the accumulation of H+ from the electrolysis of moisture, resulting in a decrease in Zeta potential (ζ). Alleviating the negative impact of these problems is the key to improving the dewatering efficiency of EDW. Therefore, in this study, calcium oxide (CaO) was used for near-anode sludge modification to increase its pH and electrical conductivity. With increasing CaO dosage, pH rose from 6.0 to 12.2, electrical conductivity increased from 368 ± 16 µS/cm to 6285 ± 21 µS/cm and the ζ declined from -15.3 ± 0.6 mV to -8.8 ± 0.4 mV. The EDW tests were conducted at 30 V and 25.5 kPa. The results indicate near-anode sludge modification with CaO weighing 3%-5% mass of raw sludge (mu(RS)) improved the EDW effect, while the energy consumption increased slightly. When 3%-5% mu(RS) of CaO was added, the final moisture content of sludge was 54.5%-44.3%, below that of the blank group (no CaO added), which was 57.9%; the time to obtain target moisture content (60%) was 910 s-590 s, lower than the blank group's 1060 s; and the energy consumption to obtain target moisture content was 0.233 kW h/kg H2O-0.271 kW h/kg H2O, higher than the blank group's 0.157 kW h/kg H2O. A quantitative criterion (KsiEDW) was adopted to assess the feasibility of EDW. Economically and energetically, the experiment with 4% mu(RS) of CaO added for near-anode modification was the optimal condition in this research, due to its second smallest KsiEDW, the best sludge reduction effect (67.2%), lower final moisture content (46.2%) and less time (640 s) to obtain target moisture content. The results show some mechanisms of EDW and provide experience for practical application.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Compuestos de Calcio , Electrodos , Óxidos , Agua
6.
Lipids Health Dis ; 13: 47, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24621278

RESUMEN

BACKGROUND: Studies investigating the association between the apolipoprotein E (APOE) gene polymorphism and the risk of intracerebral hemorrhage (ICH) have reported conflicting results. We here performed a meta-analysis based on the evidence currently available from the literature to make a more precise estimation of this relationship. METHODS: Published literature from the National Library of Medline and Embase databases were retrieved. Odds ratio (OR) and 95% confidence interval (CI) were calculated in fixed- or random-effects models when appropriate. Subgroup analyses were performed by race. RESULTS: This meta-analysis included 11 case-control studies, which included 1,238 ICH cases and 3,575 controls. The combined results based on all studies showed that ICH cases had a significantly higher frequency of APOE ϵ4 allele (OR= 1.42, 95% CI= 1.21,1.67, P<0.001). In the subgroup analysis by race, we also found that ICH cases had a significantly higher frequency of APOE ϵ4 allele in Asians (OR= 1.52, 95% CI= 1.20,1.93, P<0.001) and in Caucasians (OR= 1.34, 95% CI= 1.07,1.66, P=0.009). There was no significant relationship between APOE ϵ2 allele and the risk of ICH. CONCLUSION: Our meta-analysis suggested that APOE ϵ4 allele was associated with a higher risk of ICH.


Asunto(s)
Apolipoproteínas E/genética , Hemorragia Cerebral/genética , Estudios de Casos y Controles , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo Genético , Isoformas de Proteínas/genética , Factores de Riesgo
7.
Appl Biochem Biotechnol ; 196(2): 1044-1057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37318687

RESUMEN

The study aimed to determine the expression of miR451 in colorectal cancer (CRC) subjects with CRC cells, and the role of miR451 in colorectal cancer cells. In October 2020, ATC purchased CRC and normal mucosal cell lines of CRC and implanted them in DMEM with 10% fetal serum. The suitability of the HT29 cell line is verified using the STR profile. In an incubator with 5% CO2, enlarged cells were placed at 37 °C. TCGA data was used to select the top 120 patients with a high voice and the lowest 120 patients with a low voice. Cells were collected and coated with Annexin V and PE according to the manufacturer's instructions after 24.0 h. After that, the cells were separated. Cells were also tested using flow cytometry. HCT-120 cells were transplanted into a concentration of 5×105/ml cells in 6-source plates. HCT120 cells in the experimental group were combined with miR451 mimics, miR451 inhibitors, or miR451 miR + SMAD4B for 12 h at 37 °C, and cells were collected 24 h later at 37 °C. The sample was injected with 5 ml of Annexin VFITC and PE. Compared with normal colorectal mucosal cells, CRC cell lines decreased miR451 expression levels (fetal human cells (FHC) and HCoEpiC). Then, the HCT120 cells were transfected with miR451 inhibitors, and 72 h after transfection, say of miR451 was normal. There was a significant decrease in cell function in the miR451mimic groups, but an increase when the miR451 was blocked. The proliferation of cancer cells was prevented and chemotherapy was effective when miR451 was overexpressed. The SMAD4 gene provides instructions for making a protein involved in transmitting chemical signals from the cell surface to the nucleus. The SMAD4B expression was tested by RT-qPCR and Western blotting after 72.0 h of transmission. The mRNA and protein expression of SMAD4B decreased significantly when miR451 was significantly higher than when inhibited, as revealed in the results of this study. Seventy-two hours after transplantation, mRNA levels and SMAD4B proteins were measured in HCT120 cells. In addition, the researchers in this study investigated whether miR451 was associated with SMAD4B-directed control of CRC growth and migration. It was found that SMAD4B is highly expressed in both CRC and para-cancer tissues while using the TCGA database to detect SMAD4B expression. Patients with CRC with SMAD4B have a severe prognosis. MiR451 is sensitive to depressive disorders by targeting SMAD4B, according to these studies. We found that miR451 inhibited cell growth and migration, made CRC cells more readily available in chemotherapy, and did so by targeting SMAD4B. The findings suggest that miR451 and its genetic predisposition, SMAD4B, may help predict the prognosis and course of cancer patients. Treatments that target the miR451/SMAD4B axis may be helpful to people with CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Movimiento Celular/genética , Células HT29 , Proliferación Celular/genética , ARN Mensajero , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
8.
Chemosphere ; 362: 142607, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876330

RESUMEN

Cadmium (Cd) is a ubiquitous pollutant that poses a potential threat to human health. Monitoring Cd(II) in drinking water has significant implications for preventing potential threats of Cd(II) to human. However, the weak signal output and response to nontarget interference limit the detection of Cd(II) using bacterial biosensors. In this study, to enable sensitive and specific detection of Cd(II) in water, a stable whole-cell biosensor, K12-PMP-luxCDABE-△cysI, was constructed in a dual-promoter mode by fusing the mercury promoter Pmer, regulatory gene merR(m), and luciferase gene luxCDABE into the E.coli chromosome based on CRISPR/Cas9 gene editing technology. By knocking out the cadmium-resistance-gene cysI, the sensitivity of the biosensor to Cd(II) was further enhanced. The constructed E. coli biosensor K12-PMP-luxCDABE-△cysI exhibited good nonlinear responses to 0.005-2 mg/L Cd(II). Notably, among the three constructed E. coli biosensor, it exhibited the strongest fluorescence intensity, with the limit of detection meeting the allowable limit for Cd(II) in drinking water. Simultaneously, it could specifically detect Cd(II). Nontarget metal ions, such as Zn(II), Hg(II), and Pb(II), did not affect its performance. Furthermore, it exhibited superior performance in detecting Cd(II) in real drinking water samples by avoiding background interference, and showed excellent stability with the relative standard deviation under 5%. Thus, K12-PMP-luxCDABE-△cysI holds promise as a potential tool for the detection of Cd(II) in drinking water.

9.
J Hazard Mater ; 469: 134075, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508114

RESUMEN

Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.


Asunto(s)
Bacillus , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Cloro/química , Halogenación , Halógenos , Desinfección , Flavobacterium , Cloraminas/química
10.
Cancer Res Treat ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38726508

RESUMEN

Purpose: Molecular residual disease (MRD) is a promising biomarker in colorectal cancer (CRC) for prognosis and guiding treatment, while the whole-exome sequencing (WES) based tumor-informed assay is standard for evaluating MRD based on circulating tumor DNA (ctDNA). In this study, we assessed the feasibility of a fixed-panel for evaluating MRD in CRC. Materials and Methods: 75 patients with resectable stage I-III CRC were enrolled. Tumor tissues obtained by surgery, and pre-operative and post-operative day 7 blood samples were collected. The ctDNA was evaluated using the tumor-agnostic and tumor-informed fixed assays, as well as the WES-based and panel-based personalized assays in randomly selected patients. Results: The tumor-informed fixed assay had a higher pre-operative positive rate than the tumor-agnostic assay (73.3% vs 57.3%). The pre-op ctDNA status failed to predict disease-free survival (DFS) in either of the fixed assays, while the tumor-informed fixed assay-determined post-op ctDNA positivity was significantly associated with worse DFS (HR, 20.74, 95%CI 7.19-59.83; p<0.001), which was an independent predictor by multivariable analysis (HR, 28.57, 95%CI 7.10-114.9; p<0.001). Sub-cohort analysis indicated the WES-based personalized assay had the highest pre-operative positive rate (95.1%). The two personalized assays and the tumor-informed fixed assay demonstrated same results in post-op landmark (HR, 26.34, 95%CI, 6.01-115.57; p<0.001), outperforming the tumor-agnostic fixed panel (HR, 3.04, 95%CI, 0.94-9.89; p=0.052). Conclusion: Our study confirmed the prognostic value of the ctDNA positivity at post-op day 7 by the tumor-informed fixed panel. The tumor-informed fixed panel may be a cost-effective method to evaluate MRD, which warrants further studies in future.

11.
Oxid Med Cell Longev ; 2023: 1744102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846713

RESUMEN

Background: Pancreatic cancer is a highly aggressive malignancy worldwide with rapid development and an exceedingly poor prognosis. lncRNAs play crucial roles in regulating the biological behaviors of tumor cells. In this study, we discovered that LINC00578 acted as a regulator of ferroptosis in pancreatic cancer. Methods: A series of loss- and gain-of-function experiments in vitro and in vivo were performed to explore the oncogenic role of LINC00578 in pancreatic cancer development and progression. Label-free proteomic analysis was performed to select LINC00578-related differentially expressed proteins. Pull-down and RNA immunoprecipitation assays were carried out to determine and validate the binding protein of LINC00578. Coimmunoprecipitation assays were used to investigate the association of LINC00578 with SLC7A11 in ubiquitination and to confirm the interaction between ubiquitin-conjugating enzyme E2 K (UBE2K) and SLC7A11. An immunohistochemical assay was used to confirm the correlation between LINC00578 and SLC7A11 in the clinic. Results: LINC00578 positively regulated cell proliferation and invasion in vitro and tumorigenesis in vivo in pancreatic cancer. LINC00578 can obviously inhibit ferroptosis events, including cell proliferation, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) depolarization. In addition, the LINC00578-induced inhibitory effect on ferroptosis events was rescued by SLC7A11 knockdown. Mechanistically, LINC00578 directly binds UBE2K to decrease the ubiquitination of SLC7A11, thus accelerating SLC7A11 expression. In the clinic, LINC00578 is closely associated with clinicopathologic factors and poor prognosis and correlated with SLC7A11 expression in pancreatic cancer. Conclusions: This study elucidated that LINC00578 acts as an oncogene to promote pancreatic cancer cell progression and suppress ferroptosis by directly combining with UBE2K to inhibit the ubiquitination of SLC7A11, which provides a promising option for the diagnosis and treatment of pancreatic cancer.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Ferroptosis/genética , Proteómica , Neoplasias Pancreáticas/genética , Sistema de Transporte de Aminoácidos y+/genética , Enzimas Ubiquitina-Conjugadoras , Neoplasias Pancreáticas
12.
Sci Total Environ ; 893: 164816, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311521

RESUMEN

People who engage in water sports in recreational marine water may be at high risk of exposure to hazardous antibiotic-resistant bacteria (ARB). However, information on the contribution of specific sources to ARB contamination in recreational marine water is still lacking. Here, we carried out monthly analyses of antibiotic resistance genes (ARGs), pathogenic bacteria and 16S rRNA sequencing data at the First Bathing Beach in Qingdao. The sampling sites were divided into four areas: swimming area, intermediate area, polluted area, and sewage outlet. Correlations between ARGs and bacterial communities among sampling sites were explored by spatial and temporal analysis. We found that all of 21 important ARG types were detected in the swimming area, with aadA (1.3 × 106 ± 2.7 × 106 genomic copies/L) and sul2 (4.3 × 105 ± 5.9 × 105 genomic copies/L) at the highest concentration. Most ARGs were detected at highest frequency and concentration in the sewage outlet and decreased from there to the swimming area. ARG correlation between these two areas was positive only in the cold season, suggesting that sewage was the main source of ARG pollution in the swimming area during that period. The ARGs ermA(1) and vanA were detected at highest frequency and concentration in the swimming area and were significantly correlated with the intestinal pathogen Enterococcus, which was more abundant here than in the surrounding areas during the warm season. Co-occurrence analysis of bacterial genera and ARGs showed that six genera were commonly correlated with ARGs in all sampling areas in the cold season, while none were found in the warm season. Our findings indicate that ARG pollution in the swimming area was also driven by sources other than sewage, especially in the warm season, which is the peak tourist season in Qingdao. These results provide a valuable basis for the implementation of effective strategies to control ARG risks in recreational waters.


Asunto(s)
Aguas del Alcantarillado , Agua , Humanos , Estaciones del Año , Antibacterianos/farmacología , ARN Ribosómico 16S , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana/genética , Genes Bacterianos
13.
J Hazard Mater ; 430: 128474, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35180521

RESUMEN

Antibiotics are known to be key drivers of antibiotic resistance and antibiotic resistance gene transmission. However, the contribution of the emerging pollutant metformin in facilitating antibiotic resistance remains unclear. In this study, Escherichia coli K12 (E. coli) was exposed to metformin at concentrations ranging from 10-7 to 200 mg/L, and antibiotic susceptibility test of isolated mutants was evaluated. DNA and RNA sequencing and real-time quantitative PCR (qPCR) were performed to identify the underlying mechanisms. The results showed metformin concentrations ranging from 10-6 to 200 mg/L caused multiple-antibiotic resistance in E. coli. After 1 day exposure to metformin at 1 ng/L, the mutation frequency in E. coli increased to 1.24 × 10-8, and it further increased to 7.13 × 10-8 when prolonged to 5 days. And the mutants showed multiple-antibiotic resistance. Whole-genome DNA analysis of mutants showed chromosome mutagenesis in marR, tonB, and fhuA. Global transcriptional analysis and qPCR revealed the expressions of emrK, emrY, cusB, cusC, hycA, cecR, marA, acrA, and acrB were upregulated and those of tonB and fhuA were significantly downregulated. Thus, an increase in efflux systems AcrAB-TolC, EmrKY-TolC, and CusCFBA together with a decrease in FhuA-TonB protein complex play vital roles in the multiple-antibiotic resistance induced by metformin.


Asunto(s)
Contaminantes Ambientales , Proteínas de Escherichia coli , Metformina , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Cromosomas , Farmacorresistencia Microbiana/genética , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana , Metformina/metabolismo , Metformina/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutagénesis , Agua
14.
Environ Pollut ; 307: 119541, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623567

RESUMEN

Antibiotic resistance genes (ARGs), especially last-resort ARGs (LARGs), are receiving extensive attention as emerging environmental contaminants in groundwater. However, their prevalent intracellular and extracellular patterns and bacterial sources in groundwater remain unclear. Herein, groundwater samples were collected in Tianjin, and characterized based on the profiles of intracellular ARGs (iARGs) and extracellular ARGs (eARGs), as well as the resident bacterial communities and extracellular DNA (eDNA)-releasing bacterial communities. The quantitative real-time PCR assays showed that eARGs presented fewer subtypes than iARGs and generally displayed lower detection frequencies than the corresponding iARGs. Similarly, LARGs exhibited lower detection frequencies than common ARGs, but the total abundance showed no significant differences between them. Genes vanA and blaVIM were the observed dominant LARGs, and aadA was the observed common ARG independent of location inside or outside the bacteria. Furthermore, the top 10 phyla showed much difference between the main eDNA-releasing bacteria and the dominant resident bacteria. Proteobacteria was the predominant resident bacterial phyla while dominating the source of eDNA in groundwater. Despite representing a minor portion of the abundance in the resident bacteria, Actinobacteriota, Acidobacteriota, and Chloroflex surprisingly accounted for a large majority of eDNA release. Co-occurrence patterns among persistent ARGs, the resident bacteria, and eDNA-releasing bacteria revealed that the dominant common iARG aadA and intracellular LARGs blaVIM and vanA had significant positive correlations with Methylobacterium_Methylorubrum and Shewanella. Meanwhile, the dominant extracellular LARG blaVIM may be released by bacteria belonging to at least five genera, including Ellin6067, Bifidobacterium, Blautia, Veillonella, and Dechloromonas. Collectively, the findings of this study extend our understanding regarding the distribution of ARGs and their bacterial sources in groundwater, and indicate the serious pollution of LARGs in groundwater, which poses potential risks to public health.


Asunto(s)
Antibacterianos , Agua Subterránea , Antibacterianos/farmacología , Bacterias/genética , ADN , Farmacorresistencia Microbiana/genética , Genes Bacterianos
15.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 2): m245, 2011 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21522900

RESUMEN

In the title compound, [Co(C(12)H(13)N(2)O(3))(2)], the Co(II) ion is situated on a twofold rotation axis and is coordinated by two N and two O atoms from two symmetry-related Schiff base 2-(cyclo-pentyl-imino-meth-yl)-4-nitro-phenolate ligands (L) in a distorted tetra-hedral geometry. The cyclo-pentyl ring in L is disordered over two conformations in a 0.640 (19):0.360 (19) ratio.

16.
J Gastrointest Oncol ; 12(4): 1673-1690, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34532119

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most lethal malignant tumors worldwide with poor outcomes. Previous studies have shown that tumor necrosis factor receptor superfamily member 6b (TNFRSF6B) plays an important role in cancer progression and immunosuppression. However, the mechanisms by which TNFRSF6B influence pancreatic cancer, and the regulatory networks involved remain to be further studied. METHODS: This study analyzed the mRNA information and clinical data of patients from The Cancer Genome Atlas (TCGA) and the ONCOMINE databases. The gene co-expression data regarding TNFRSF6B was obtained from the c-BioPortal and used to explore the functional network of TNFRSF6B in pancreatic cancer, as well as its function in tumor immunity. Short hairpin (sh) RNA knock-down experiments were performed to examine the functional roles of TNFRSF6B in pancreatic cancer cell lines. RESULTS: The expression of TNFRSF6B was elevated in pancreatic cancer tissues compared to normal pancreatic tissues, and its high expression was associated with poor prognosis of patients with pancreatic cancer. TNFRSF6B was found to be widely involved in cell cycle processes, apoptosis, apoptosis signaling pathways, immune responses, and responses to interferon. Knock-down of TNFRSF6B expression inhibited pancreatic cancer cell proliferation and invasion in vitro. Moreover, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was found to be co-expressed with TNFRSF6B, and there was a positive correlation between these molecules in pancreatic cancer cells. CONCLUSIONS: This report suggested that TNFRSF6B has a critical role in the progression and metastasis of pancreatic cancer. These findings provide novel insights into the role of TNFRSF6B in the functional network of pancreatic cancer, and suggest that TNFRSF6B may be a potential therapeutic target.

17.
World J Clin Cases ; 9(17): 4143-4158, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34141777

RESUMEN

BACKGROUND: MUC16, encoding cancer antigen 125, is a frequently mutated gene in gastric cancer. In addition, MUC16 mutations seem to result in a better prognosis in gastric cancer. However, the mechanisms that lead to a better prognosis by MUC16 mutations have not yet been clarified. AIM: To delve deeper into the underlying mechanisms that explain why MUC16 mutations signal a better prognosis in gastric cancer. METHODS: We used multi-omics data, including mRNA, simple nucleotide variation, copy number variation and methylation data from The Cancer Genome Atlas, to explore the relationship between MUC16 mutations and prognosis. Cox regression and random survival forest algorithms were applied to search for hub genes. Gene set enrichment analysis was used to elucidate the molecular mechanisms. Single-sample gene set enrichment analysis and "EpiDISH" were used to assess immune cells infiltration, and "ESTIMATE" for analysis of the tumor microenvironment. RESULTS: Our study found that compared to the wild-type group, the mutation group had a better prognosis. Additional analysis indicated that the MUC16 mutations appear to activate the DNA repair and p53 pathways to act as an anti-tumor agent. We also identified a key gene, NPY1R (neuropeptide Y receptor Y1), which was significantly more highly expressed in the MUC16 mutations group than in the MUC16 wild-type group. The high expression of NPY1R predicted a poorer prognosis, which was also confirmed in a separate Gene Expression Omnibus cohort. Further susceptibility analysis revealed that NPY1R might be a potential drug target for gastric cancer. Furthermore, in the analysis of the tumor microenvironment, we found that immune cells in the mutation group exhibited higher anti-tumor effects. In addition, the tumor mutation burden and cancer stem cells index were also higher in the mutation group than in the wild-type group. CONCLUSION: We speculated that the MUC16 mutations might activate the p53 pathway and DNA repair pathway: alternatively, the tumor microenvironment may be involved.

18.
J Cancer ; 12(11): 3164-3179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33976726

RESUMEN

Alternative splicing (AS), as an effective and universal mechanism of transcriptional regulation, is involved in the development and progression of cancer. Therefore, systematic analysis of alternative splicing in pancreatic adenocarcinoma (PAAD) is warranted. The corresponding clinical information of the RNA-Seq data and PAAD cohort was downloaded from the TCGA data portal. Then, a java application, SpliceSeq, was used to evaluate the RNA splicing pattern and calculate the splicing percentage index (PSI). Differentially expressed AS events (DEAS) were identified based on PSI values between PAAD cancer samples and normal samples of adjacent tissues. Kaplan-Meier and Cox regression analyses were used to assess the association between DEAS and patient clinical characteristics. Unsupervised cluster analysis used to reveal four clusters with different survival patterns. At the same time, GEO and TCGA combined with GTEx to verify the differential expression of AS gene and splicing factor. After rigorous filtering, a total of 45,313 AS events were identified, 1,546 of which were differentially expressed AS events. Nineteen DEAS were found to be associated with OS with a five-year overall survival rate of 0.946. And the subtype clusters results indicate that there are differences in the nature of individual AS that affect clinical outcomes. Results also identified 15 splicing factors associated with the prognosis of PAAD. And the splicing factors ESRP1 and RBM5 played an important role in the PAAD-associated AS events. The PAAD-associated AS events, splicing networks, and clusters identified in this study are valuable for deciphering the underlying mechanisms of AS in PAAD and may facilitate the establishment of therapeutic goals for further validation.

19.
Contemp Clin Trials ; 103: 106337, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33662589

RESUMEN

Preterm infants constitute an important proportion of neonatal deaths and various complications, and very preterm infants (VPI) are more likely to develop severe complications, such as intraventricular hemorrhage (IVH), anemia, and sepsis. It has been confirmed that placental transfusion can supplement blood volume in infants and reduce preterm-associated complications, which is further conducive to the development of the nervous system and a better long-term prognosis. Based on these advantages, placental transfusion has been widely used in VPI. There are three main types of placental transfusion: delayed cord clamping (DCC), intact umbilical cord milking (I-UCM), and cut umbilical cord milking (C-UCM). However, the optimal method for PT-VPI remains controversial, and it is urgent to identify the best method of placental transfusion. We plan to fully evaluate the safety and effectiveness of these three placental transfusion methods in VPI in a 3-arm multicenter randomized controlled trial: Placental Transfusion in Very Preterm Infants (PT-VPI). Trial registration: chictr.org.cn, number ChiCTR2000030953.


Asunto(s)
Recien Nacido Prematuro , Placenta , Transfusión Sanguínea , Constricción , Femenino , Humanos , Recién Nacido , Embarazo , Cordón Umbilical
20.
Cell Death Dis ; 11(5): 387, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439835

RESUMEN

Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Neoplasias Pulmonares/metabolismo , Transducción de Señal/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA