Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 457(3): 473-8, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25600811

RESUMEN

The Heat Shock Response (HSR) in the cytosol and the Unfolded Protein Response (UPR) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. In Saccharomyces cerevisiae, HSR is regulated by transcription factor Hsf1, and UPR Ire1 branch activates transcription factor Hac1. Here we demonstrate systemic regulation of proteostasis through a direct link between UPR and HSR. Hsf1 is activated by UPR and its HSR depends on intact UPR. This link is mediated by Sir2, which is not only essential for Hsf1 HSR but also required for Hsf1 activation by UPR. Excess Sir2 augments Hsf1 activation by UPR and can compensate for its impairment in UPR-defective strains. Sir2 is upregulated by UPR but, in turn, it also attenuates this pathway, ensuring that UPR functions only transiently.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Respuesta de Proteína Desplegada/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Microbiol ; 84(4): 778-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22463761

RESUMEN

To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1- and G1/S-specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal-specific genes is dampened under certain conditions in the Canrm1(-/-) mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/genética , Ciclo Celular , Replicación del ADN , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Genes cdc , Secuencia de Aminoácidos , Núcleo Celular/química , Citoplasma/química , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
3.
mBio ; 10(4)2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337722

RESUMEN

Eukaryotic genomes are packaged into chromatin structures that play pivotal roles in regulating all DNA-associated processes. Histone posttranslational modifications modulate chromatin structure and function, leading to rapid regulation of gene expression and genome stability, key steps in environmental adaptation. Candida albicans, a prevalent fungal pathogen in humans, can rapidly adapt and thrive in diverse host niches. The contribution of chromatin to C. albicans biology is largely unexplored. Here, we generated the first comprehensive chromatin profile of histone modifications (histone H3 trimethylated on lysine 4 [H3K4me3], histone H3 acetylated on lysine 9 [H3K9Ac], acetylated lysine 16 on histone H4 [H4K16Ac], and γH2A) across the C. albicans genome and investigated its relationship to gene expression by harnessing genome-wide sequencing approaches. We demonstrated that gene-rich nonrepetitive regions are packaged into canonical euchromatin in association with histone modifications that mirror their transcriptional activity. In contrast, repetitive regions are assembled into distinct chromatin states; subtelomeric regions and the ribosomal DNA (rDNA) locus are assembled into heterochromatin, while major repeat sequences and transposons are packaged in chromatin that bears features of euchromatin and heterochromatin. Genome-wide mapping of γH2A, a marker of genome instability, identified potential recombination-prone genomic loci. Finally, we present the first quantitative chromatin profiling in C. albicans to delineate the role of the chromatin modifiers Sir2 and Set1 in controlling chromatin structure and gene expression. This report presents the first genome-wide chromatin profiling of histone modifications associated with the C. albicans genome. These epigenomic maps provide an invaluable resource to understand the contribution of chromatin to C. albicans biology and identify aspects of C. albicans chromatin organization that differ from that of other yeasts.IMPORTANCE The fungus Candida albicans is an opportunistic pathogen that normally lives on the human body without causing any harm. However, C. albicans is also a dangerous pathogen responsible for millions of infections annually. C. albicans is such a successful pathogen because it can adapt to and thrive in different environments. Chemical modifications of chromatin, the structure that packages DNA into cells, can allow environmental adaptation by regulating gene expression and genome organization. Surprisingly, the contribution of chromatin modification to C. albicans biology is still largely unknown. For the first time, we analyzed C. albicans chromatin modifications on a genome-wide basis. We demonstrate that specific chromatin states are associated with distinct regions of the C. albicans genome and identify the roles of the chromatin modifiers Sir2 and Set1 in shaping C. albicans chromatin and gene expression.


Asunto(s)
Candida albicans/genética , Eucromatina , Genoma Fúngico , Código de Histonas , Secuencias Repetitivas de Ácidos Nucleicos , Candida albicans/patogenicidad , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Histonas/metabolismo
4.
PLoS One ; 11(2): e0148650, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26862897

RESUMEN

Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.


Asunto(s)
Proteínas Fúngicas/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Agua , División Celular , Medios de Cultivo/farmacología , Degradación Asociada con el Retículo Endoplásmico , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Micología/métodos , Péptidos/análisis , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
5.
PLoS One ; 9(10): e111505, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356557

RESUMEN

Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.


Asunto(s)
Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/farmacología , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Modelos Biológicos , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA