Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396885

RESUMEN

The mammalian myocardium grows rapidly during early development due to cardiomyocyte proliferation, which later transitions to cell hypertrophy to sustain the heart's postnatal growth. Although this cell transition in the postnatal heart is consistently preserved in mammalian biology, little is known about the regulatory mechanisms that link proliferation suppression with hypertrophy induction. We reasoned that the production of a micro-RNA(s) could serve as a key bridge to permit changes in gene expression that control the changed cell fate of postnatal cardiomyocytes. We used sequential expression analysis to identify miR205 as a micro-RNA that was uniquely expressed at the cessation of cardiomyocyte growth. Cardiomyocyte-specific miR205 deletion animals showed a 35% increase in heart mass by 3 months of age, with commensurate changes in cell cycle and Hippo pathway activity, confirming miR205's potential role in controlling cardiomyocyte proliferation. In contrast, overexpression of miR205 in newborn hearts had little effect on heart size or function, indicating a complex, probably redundant regulatory system. These findings highlight miR205's role in controlling the shift from cardiomyocyte proliferation to hypertrophic development in the postnatal period.


Asunto(s)
Corazón , MicroARNs , Miocitos Cardíacos , Animales , Animales Recién Nacidos , Proliferación Celular/genética , Hipertrofia/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Ratones
2.
J Biol Chem ; 293(51): 19761-19770, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30389785

RESUMEN

Muscle-enriched lamin-interacting protein (Mlip) is an alternatively spliced gene whose splicing specificity is dictated by tissue type. MLIP is most abundantly expressed in brain, cardiac, and skeletal muscle. In the present study, we systematically mapped the transcriptional start and stop sites of murine Mlip Rapid amplification of cDNA ends (RACE) of Mlip transcripts from the brain, heart, and skeletal muscle revealed two transcriptional start sites (TSSs), exon 1a and exon 1b, and only one transcriptional termination site. RT-PCR analysis of the usage of the two identified TSSs revealed that the heart utilizes only exon 1a for MLIP expression, whereas the brain exclusively uses exon 1b TSS. Loss of Mlip exon 1a in mice resulted in a 7-fold increase in the prevalence of centralized nuclei in muscle fibers with the Mlip exon1a-deficient satellite cells on single fibers exhibiting a significant delay in commitment to a MYOD-positive phenotype. Furthermore, we demonstrate that the A-type lamin-binding domain in MLIP is encoded in exon 1a, indicating that MLIP isoforms generated with exon 1b TSS lack the A-type lamin-binding domain. Collectively these findings suggest that Mlip tissue-specific expression and alternative splicing play a critical role in determining MLIP's functions in mice.


Asunto(s)
Empalme Alternativo/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica/genética , Proteínas Nucleares/genética , Sitio de Iniciación de la Transcripción , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas Co-Represoras , Exones/genética , Humanos , Intrones/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 315(6): H1821-H1834, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30311496

RESUMEN

Exercise training is beneficial for preserving cardiac function postmyocardial infarction (post-MI), but the underlying mechanisms are not well understood. We investigated one possible mechanism, brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling, with the TrkB blocker ANA-12 (0.5 mg·kg-1·day-1). Male Wistar rats underwent sham surgery or ligation of the left descending coronary artery. The surviving MI rats were allocated as follows: sedentary MI rats treated with vehicle, exercise-trained MI rats treated with vehicle, and exercise-trained MI rats treated with ANA-12. Exercise training was done 5 days/wk for 4 wk on a motor-driven treadmill. At the end, left ventricular (LV) function was evaluated by echocardiography and a Millar catheter. Mature BDNF and downstream effectors of BDNF-TrkB signaling, Ca2+/calmodulin-dependent protein kinase II (CaMKII), Akt, and AMP-activated protein kinase (AMPK), were assessed in the noninfarct area of the LV by Western blot analysis. Exercise training increased stroke volume and cardiac index and attenuated the decrease in ejection fraction (EF) and increase in LV end-diastolic pressure post-MI. ANA-12 blocked the improvement of EF and attenuated the increases in stroke volume and cardiac index but did not affect LV end-diastolic pressure. Exercise training post-MI prevented decreases in mature BDNF, phosphorylated (p-)CaMKII, p-Akt, and p-AMPKα expression. These effects were all blocked by ANA-12 except for p-AMPKα. In conclusion, the exercise-induced improvement of EF is mediated by the BDNF-TrkB axis and the downstream effectors CaMKII and Akt. BDNF-TrkB signaling appears to contribute to the improvement in systolic function by exercise training. NEW & NOTEWORTHY Exercise training improves ejection fraction and left ventricular end-diastolic pressure (LVEDP) and increases stroke volume and cardiac index in rats postmyocardial infarction (post-MI). The improvement of EF but not LVEDP is mediated by activation of the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) axis and downstream effectors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt. This suggests that activation of BDNF-TrkB signaling and CaMKII and Akt is a promising target to attenuate progressive cardiac dysfunction post-MI.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Infarto del Miocardio/terapia , Condicionamiento Físico Animal/métodos , Receptor trkB/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Azepinas/uso terapéutico , Benzamidas/uso terapéutico , Presión Sanguínea , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Infarto del Miocardio/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Receptor trkB/metabolismo , Transducción de Señal , Volumen Sistólico
4.
Can J Physiol Pharmacol ; 96(5): 535-539, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29533724

RESUMEN

The capacity to isolate and study single cardiomyocytes has dramatically enhanced our understanding of the fundamental mechanisms of the heart. Currently, 2 primary methods for the isolation of cardiomyocytes are employed: (i) the neonatal isolation protocol and (ii) the Langendorff isolation method. A major limiting feature of both procedures is the inability to isolate cardiomyocytes between 3 days and 3 weeks after birth. Herein, we report the establishment and validation of a new method for the rapid and efficient isolation of mouse cardiomyocytes, regardless of age. This novel procedure utilizes whole heart perfusion of a trypsin-collagenase Krebs-based buffer through the left ventricle at a high flow rate. Cardiomyocytes can be isolated in significantly less time with a simple, syringe-pump-based apparatus. Typically, we can digest 10-15 hearts per hour. Altogether, we have established an efficient and reproducible method for the rapid isolation of fresh cardiomyocytes from postnatal mouse hearts of any age.


Asunto(s)
Separación Celular/métodos , Fibroblastos/citología , Miocitos Cardíacos/citología , Animales , Ratones , Factores de Tiempo
5.
J Biol Chem ; 290(44): 26699-714, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26359501

RESUMEN

Aging and diseases generally result from tissue inability to maintain homeostasis through adaptation. The adult heart is particularly vulnerable to disequilibrium in homeostasis because its regenerative abilities are limited. Here, we report that MLIP (muscle enriched A-type lamin-interacting protein), a unique protein of unknown function, is required for proper cardiac adaptation. Mlip(-/-) mice exhibited normal cardiac function despite myocardial metabolic abnormalities and cardiac-specific overactivation of Akt/mTOR pathways. Cardiac-specific MLIP overexpression led to an inhibition of Akt/mTOR, providing evidence of a direct impact of MLIP on these key signaling pathways. Mlip(-/-) hearts showed an impaired capacity to adapt to stress (isoproterenol-induced hypertrophy), likely because of deregulated Akt/mTOR activity. Genome-wide association studies showed a genetic association between Mlip and early response to cardiac stress, supporting the role of MLIP in cardiac adaptation. Together, these results revealed that MLIP is required for normal myocardial adaptation to stress through integrated regulation of the Akt/mTOR pathways.


Asunto(s)
Cardiomegalia/genética , Proteínas Portadoras/genética , Miocardio/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Adaptación Fisiológica , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/patología , Proteínas Co-Represoras , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Pruebas de Función Cardíaca , Hemodinámica , Isoproterenol , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Nucleares/deficiencia , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Ultrasonografía
6.
Cells ; 12(18)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759546

RESUMEN

Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Transducción de Señal , Infarto del Miocardio/metabolismo
7.
Cell Res ; 27(10): 1195-1215, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28785017

RESUMEN

The post-natal heart adapts to stress and overload through hypertrophic growth, a process that may be pathologic or beneficial (physiologic hypertrophy). Physiologic hypertrophy improves cardiac performance in both healthy and diseased individuals, yet the mechanisms that propagate this favorable adaptation remain poorly defined. We identify the cytokine cardiotrophin 1 (CT1) as a factor capable of recapitulating the key features of physiologic growth of the heart including transient and reversible hypertrophy of the myocardium, and stimulation of cardiomyocyte-derived angiogenic signals leading to increased vascularity. The capacity of CT1 to induce physiologic hypertrophy originates from a CK2-mediated restraining of caspase activation, preventing the transition to unrestrained pathologic growth. Exogenous CT1 protein delivery attenuated pathology and restored contractile function in a severe model of right heart failure, suggesting a novel treatment option for this intractable cardiac disease.


Asunto(s)
Citocinas/genética , Insuficiencia Cardíaca/genética , Corazón/crecimiento & desarrollo , Remodelación Vascular/genética , Animales , Citocinas/administración & dosificación , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Humanos , Ratones , Desarrollo de Músculos/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA