Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(12): 245, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962664

RESUMEN

KEY MESSAGE: A total of 101 QTNs were found to be associated with soybean flowering time responses to photo-thermal conditions; three candidate genes with non-synonymous substitutions were identified: Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). The flowering transition is a crucial component of soybean (Glycine max L. Merr.) development. The transition process is regulated by photoperiod, temperature, and their interaction. To examine the genetic architecture associated with temperature- and photo-thermal-mediated regulation of soybean flowering, we here performed a genome-wide association study using a panel of 201 soybean cultivars with maturity groups ranging from MG 000 to VIII. Each cultivar was grown in artificially controlled photoperiod and different seasons in 2017 and 2018 to assess the thermal response (TR) and the interactive photo-thermal response (IPT) of soybean flowering time. The panel contained 96,299 SNPs with minor allele frequencies > 5%; 33, 19, and 49 of these SNPs were significantly associated with only TR, only IPT, and both TR and IPT, respectively. Twenty-one SNPs were located in or near previously reported quantitative trait loci for first-flowering; 16 SNPs were located within 200 kb of the main-effect flowering genes GmFT2a, GmFT2b, GmFT3a, GmFT3b, GmFT5a, GmFT5b, GmCOL2b, GmPIF4b, and GmPIF4c, or near homologs of the known Arabidopsis thaliana flowering genes BBX19, VRN1, TFL1, FUL, AGL19, SPA1, HY5, PFT1, and EDF1. Natural non-synonymous allelic variations were identified in the candidate genes Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). Cultivars with different haplotypes showed significant variations in TR, IPT, and flowering time in multiple environments. The favorable alleles, candidate genes, and diagnostic SNP markers identified here provide valuable information for future improvement of soybean photo-thermal adaptability, enabling expansion of soybean production regions and improving plant resilience to global climate change.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glycine max/genética , Estudio de Asociación del Genoma Completo , Temperatura , Alelos , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA