Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(51): 12997-13002, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514817

RESUMEN

The adrenal gland is a master regulator of the human body during response to stress. This organ shows constant replacement of senescent cells by newly differentiated cells. A high degree of plasticity is critical to sustain homeostasis under different physiological demands. This is achieved in part through proliferation and differentiation of adult adrenal progenitors. Here, we report the isolation and characterization of a Nestin+ population of adrenocortical progenitors located under the adrenal capsule and scattered throughout the cortex. These cells are interconnected with progenitors in the medulla. In vivo lineage tracing revealed that, under basal conditions, this population is noncommitted and slowly migrates centripetally. Under stress, this migration is greatly enhanced, and the cells differentiate into steroidogenic cells. Nestin+ cells cultured in vitro also show multipotency, as they differentiate into mineralocorticoid and glucocorticoid-producing cells, which can be further influenced by the exposure to Angiotensin II, adrenocorticotropic hormone, and the agonist of luteinizing hormone-releasing hormone, triptorelin. Taken together, Nestin+ cells in the adult adrenal cortex exhibit the features of adrenocortical progenitor cells. Our study provides evidence for a role of Nestin+ cells in organ homeostasis and emphasizes their role under stress. This cell population might be a potential source of cell replacement for the treatment of adrenal insufficiency.


Asunto(s)
Adaptación Fisiológica , Corteza Suprarrenal/citología , Hormona Adrenocorticotrópica/metabolismo , Homeostasis , Células Madre/citología , Estrés Fisiológico , Corteza Suprarrenal/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Células Madre/fisiología
2.
Mol Metab ; 43: 101112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157254

RESUMEN

OBJECTIVE: Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis. METHODS: In vitro, we applied insulin and leptin to murine progenitor cells isolated from the pituitary and adrenal cortex and examined the role of these hormones on proliferation and differentiation. In vivo, we investigated two different mouse models of metabolic disease, obesity in leptin-deficient ob/ob mice and obesity achieved via feeding with a high-fat diet. RESULTS: Insulin was shown to lead to enhanced proliferation and differentiation of both pituitary and adrenocortical progenitors. No alterations in the progenitors were noted in our chronic metabolic stress models. However, hyperactivation of the hypothalamic-pituitary-adrenal axis was observed and the expression of the appetite-regulating genes Npy and Agrp changed in both the hypothalamus and adrenal. CONCLUSIONS: It is well-known that chronic stress and stress hormones such as glucocorticoids can induce metabolic changes including obesity and diabetes. In this article, we show for the first time that this might be based on an early sensitization of stem cells of the hypothalamic-pituitary-adrenal axis. Thus, pituitary and adrenal progenitor cells exposed to high levels of insulin are metabolically primed to a hyper-functional state leading to enhanced hormone production. Likewise, obese animals exhibit a hyperactive hypothalamic-pituitary-adrenal axis leading to adrenal hyperplasia. This might explain how stress in early life can increase the risk for developing metabolic syndrome in adulthood.


Asunto(s)
Insulina/metabolismo , Obesidad/metabolismo , Células Madre/fisiología , Estrés Fisiológico/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Insulina/farmacología , Leptina/metabolismo , Leptina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
3.
J Steroid Biochem Mol Biol ; 190: 198-206, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30959152

RESUMEN

Human individuals are constantly confronted to various kinds of stressors and the body's response and adaptation is essential for human health. The adrenal gland as the main producer of stress hormones plays a major role in the response to physiological challenges and is able to adapt to these physiological needs. Proper adaptation is of particular importance since dysregulation of the stress system is the cause of various human diseases including obesity, depression, Parkinson's disease, and post-traumatic stress disorder. Therefore, it is fundamental to understand the physiological, cellular, and molecular underpinnings of the stress adaptation in humans. Because of ethical reasons it is problematic to study the plasticity of the human gland in stress. Hence, various experimental models have been established for the analysis of the functional and cellular role of the adrenal gland adaptation on a translational approach. Here, we summarize the insights of stress-induced adrenal plasticity gained from these models and discuss their relevance to clinical observations.


Asunto(s)
Glándulas Suprarrenales/fisiología , Estrés Fisiológico , Adaptación Fisiológica , Glándulas Suprarrenales/citología , Animales , Homeostasis , Humanos , Células Madre/citología , Células Madre/metabolismo
4.
PLoS One ; 13(3): e0194643, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29596439

RESUMEN

Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell-cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.


Asunto(s)
Corteza Suprarrenal/citología , Órganos Artificiales , Regulación de la Expresión Génica , Células Madre/metabolismo , Corteza Suprarrenal/fisiología , Hormona Adrenocorticotrópica/farmacología , Animales , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Esteroide Hidroxilasas/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA