Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 147(4): 922-33, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078887

RESUMEN

C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote initiation of backward movement and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism.


Asunto(s)
Caenorhabditis elegans/fisiología , Actividad Motora , Vías Nerviosas , Sinapsis/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Electrofisiología , Interneuronas/fisiología , Mutación , Presión Osmótica , Receptores de Glutamato/genética , Receptores de Glutamato/fisiología
2.
Behav Pharmacol ; 27(1): 44-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26317299

RESUMEN

Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 µmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Insulina/metabolismo , Actividad Motora/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Actividad Motora/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
3.
J Neurosci ; 32(45): 15779-90, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136417

RESUMEN

Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems.


Asunto(s)
Dopamina/metabolismo , Miedo/fisiología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Transmisión Sináptica/fisiología , Animales , Condicionamiento Clásico/fisiología , Señales (Psicología) , Electrochoque , Masculino , Ratas , Ratas Sprague-Dawley
4.
Cell Rep ; 21(6): 1434-1441, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117550

RESUMEN

Chronic exposure to nicotine upregulates nicotinic acetylcholine receptors (nAChRs), and such upregulation is critical for the development of nicotine dependence in humans and animal models. However, how nicotine upregulates nAChRs is not well understood. Here, we identify a key role for microRNA in regulating nicotine-dependent behavior by modulating nAChR expression in C. elegans. We show that the nAChR gene acr-19 and alg-1, a key Argonaute-family member in the microRNA machinery, are specifically required for nicotine withdrawal response following chronic nicotine treatment. Chronic exposure to nicotine downregulates alg-1, leading to upregulation of acr-19. This effect is mediated by the microRNA miR-238 that recognizes the 3' UTR of acr-19 transcript. Our results unveil a previously unrecognized role for microRNA in nicotine signaling, providing insights into how chronic nicotine administration leads to upregulation of nAChR and ultimately nicotine dependence.


Asunto(s)
MicroARNs/metabolismo , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , MicroARNs/química , MicroARNs/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Alineación de Secuencia
5.
Life Sci ; 92(8-9): 410-4, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22820171

RESUMEN

Drug addiction is a psychiatric disease state, wherein a drug is impulsively and compulsively self-administered despite negative consequences. This repeated administration results in permanent changes to nervous system physiology and architecture. The molecular pathways affected by addictive drugs are complex and inter-dependent on each other. Recently, various new proteins and protein families have been discovered to play a role in drug abuse. Emerging players in this phenomenon include TRP (Transient Receptor Potential) family channels, which are primarily known to function in sensory systems. Several TRP family channels identified in both vertebrates and invertebrates are involved in psychostimulant-induced plasticity, suggesting their involvement in drug dependence. This review summarizes various observations, both from studies in humans and other organisms, which support a role for these channels in the development of drug-related behaviors.


Asunto(s)
Trastornos Relacionados con Sustancias/fisiopatología , Canales de Potencial de Receptor Transitorio/fisiología , Humanos , Canales Catiónicos TRPV/fisiología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
6.
Neurosci Lett ; 504(1): 13-7, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21888949

RESUMEN

In addition to blocking dopamine (DA) uptake, cocaine also causes an unconditioned increase in DA release. In drug naive rats, this effect is most robust within the nucleus accumbens (NAc) shell. Recent studies have shown that, in rats trained to self-administer cocaine, cocaine may act in the periphery to enhance mesolimbic DA release. Further, these studies have suggested that peripheral cocaine action may also enhance unconditioned DA release. Here, we test if it is necessary for cocaine to enter the brain to evoke unconditioned increases in DA release within the NAc shell. Administration of a cocaine analogue that crosses the blood brain barrier (cocaine HCl) enhances electrically evoked DA release and the number of cocaine-evoked phasic DA release events (i.e., DA transients) within the NAc shell. However, administration of a cocaine analogue that does not cross the blood brain barrier (cocaine MI) does not alter either measure. We therefore conclude that cocaine must act within the central nervous system to evoke unconditioned DA release within the NAc shell.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Cocaína/análogos & derivados , Cocaína/farmacología , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Animales , Estimulación Eléctrica , Electrodos Implantados , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA