RESUMEN
Functional neuroimaging studies have consistently implicated the left rostrolateral prefrontal cortex (RLPFC) as playing a crucial role in the cognitive operations supporting episodic memory and analogical reasoning. However, the degree to which the left RLPFC causally contributes to these processes remains underspecified. We aimed to assess whether targeted anodal stimulation-thought to boost cortical excitability-of the left RLPFC with transcranial direct current stimulation (tDCS) would lead to augmentation of episodic memory retrieval and analogical reasoning task performance in comparison to cathodal stimulation or sham stimulation. Seventy-two healthy adult participants were evenly divided into three experimental groups. All participants performed a memory encoding task on Day 1, and then on Day 2, they performed continuously alternating tasks of episodic memory retrieval, analogical reasoning, and visuospatial perception across two consecutive 30-min experimental sessions. All groups received sham stimulation for the first experimental session, but the groups differed in the stimulation delivered to the left RLPFC during the second session (either sham, 1.5 mA anodal tDCS, or 1.5 mA cathodal tDCS). The experimental group that received anodal tDCS to the left RLPFC during the second session demonstrated significantly improved episodic memory source retrieval performance, relative to both their first session performance and relative to performance changes observed in the other two experimental groups. Performance on the analogical reasoning and visuospatial perception tasks did not exhibit reliable changes as a result of tDCS. As such, our results demonstrate that anodal tDCS to the left RLPFC leads to a selective and robust improvement in episodic source memory retrieval.
Asunto(s)
Memoria Episódica , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Adulto , Femenino , Lateralidad Funcional , Humanos , Masculino , Pensamiento/fisiología , Estimulación Transcraneal de Corriente Directa , Percepción Visual/fisiología , Adulto JovenRESUMEN
Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity-a measure of network segregation-is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN.SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge.
Asunto(s)
Lóbulo Frontal/fisiología , Hipocampo/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Femenino , Humanos , Masculino , Vías Nerviosas/fisiología , Análisis y Desempeño de Tareas , Adulto JovenRESUMEN
Studies of autobiographical memory retrieval often use photographs to probe participants' memories for past events. Recent neuroimaging work has shown that viewing photographs depicting events from one's own life evokes a characteristic pattern of brain activity across a network of frontal, parietal, and medial temporal lobe regions that can be readily distinguished from brain activity associated with viewing photographs from someone else's life (Rissman, Chow, Reggente, and Wagner, 2016). However, it is unclear whether the neural signatures associated with remembering a personally experienced event are distinct from those associated with recognizing previously encountered photographs of an event. The present experiment used a novel functional magnetic resonance imaging (fMRI) paradigm to investigate putative differences in brain activity patterns associated with these distinct expressions of memory retrieval. Eighteen participants wore necklace-mounted digital cameras to capture events from their everyday lives over the course of three weeks. One week later, participants underwent fMRI scanning, where on each trial they viewed a sequence of photographs depicting either an event from their own life or from another participant's life and judged their memory for this event. Importantly, half of the trials featured photographic sequences that had been shown to participants during a laboratory session administered the previous day. Multi-voxel pattern analyses assessed the sensitivity of two brain networks of interest-as identified by a meta-analysis of prior autobiographical and laboratory-based memory retrieval studies-to the original source of the photographs (own life or other's life) and their experiential history as stimuli (previewed or non-previewed). The classification analyses revealed a striking dissociation: activity patterns within the autobiographical memory network were significantly more diagnostic than those within the laboratory-based network as to whether photographs depicted one's own personal experience (regardless of whether they had been previously seen), whereas activity patterns within the laboratory-based memory network were significantly more diagnostic than those within the autobiographical memory network as to whether photographs had been previewed (regardless of whether they were from the participant's own life). These results, also apparent in whole-brain searchlight classifications, provide evidence for dissociable patterns of activation across two putative memory networks as a function of whether real-world photographs trigger the retrieval of firsthand experiences or secondhand event knowledge.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Reconocimiento en Psicología/fisiología , Adolescente , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto JovenRESUMEN
Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations.
Asunto(s)
Memoria Episódica , Corteza Prefrontal/fisiología , Adulto , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Cognición/fisiología , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis Multivariante , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Oxígeno/sangre , Percepción/fisiología , Semántica , Pensamiento/fisiología , Adulto JovenRESUMEN
Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 103. There was no detectable metamorphic, nebular or aqueous alteration. In previous work Ogliore et al. (2012) reported that Iris formed late, > 3 Myr after CAIs, assuming 26Al was homogenously distributed, and was rich in heavy oxygen. Iris may be similar to assemblages found only in interplanetary dust particles and Stardust cometary samples called Kool particles. Callie is chemically and isotopically very similar but not identical to Iris.
RESUMEN
Recent evidence suggests that age-related impairments in cognition may be mediated by a specific deficit in the ability to maintain goal-relevant information, a critical component of cognitive control dependent on the dorsolateral prefrontal cortex, although the underlying neural mechanism of these deficits remains unclear. To examine white matter hyperintensities as a neurobiological mechanism of these impairments, older individuals with severe white matter hyperintensity burden, older individuals with low white matter hyperintensity burden, and young adults were assessed in an event-related functional imaging scan while performing the 'AX'-continuous performance task. Individuals with severe white matter hyperintensity burden showed a significant reduction in dorsolateral prefrontal cortex activity during the high cognitive control cue condition relative to the low white matter hyperintensity group and young individuals. Conversely, those with severe white matter hyperintensity burden showed greater activity in rostral anterior cingulate cortex compared to young individuals. These results are consistent with impaired cognitive control and a possible failure to deactivate default-mode regions in these subjects. Additionally, those with severe white matter hyperintensity burden showed reduced functional connectivity between dorsolateral prefrontal cortex and task-relevant brain regions including middle frontal gyrus, and supramarginal gyrus relative to young subjects and those with minimal white matter hyperintensity burden. These results suggest that age-related goal maintenance impairments and associated dorsolateral prefrontal cortex dysfunction may partly reflect incipient white matter disease of interconnected cognitive networks.
Asunto(s)
Corteza Cerebral/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Leucoencefalopatías/complicaciones , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Corteza Cerebral/irrigación sanguínea , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Leucoencefalopatías/patología , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Oxígeno/sangre , Tiempo de Reacción/fisiología , Adulto JovenRESUMEN
Post-traumatic stress disorder (PTSD) leads to impairments in both cognitive and affective functioning. Animal work suggests that chronic stress reduces dopamine tone, and both animal and human studies argue that changes in dopamine tone influence working memory, a core executive function. These findings give rise to the hypothesis that increasing cortical dopamine tone in individuals with greater PTSD symptomatology should improve working memory performance. In this pharmacological functional magnetic resonance imaging (fMRI) study, 30 US military veterans exhibiting a range of PTSD severity completed an emotional working memory task. Each subject received both placebo and the catechol-O-methyl transferase inhibitor tolcapone, which increases cortical dopamine tone, in randomized, double-blind, counterbalanced fashion. Mnemonic discriminability (calculated with d', an index of the detectability of working memory signals) and response bias were evaluated in the context of task-related brain activations. Subjects with more severe PTSD showed both greater tolcapone-mediated improvements in d' and larger tolcapone-mediated reductions in liberally-biased responding for fearful stimuli. FMRI revealed that tolcapone augmented activity within bilateral frontoparietal control regions during the decision phase of the task. Specifically, tolcapone increased cortical responses to fearful relative to neutral stimuli in higher severity PTSD subjects, and reduced cortical responses to fearful stimuli for lower severity PTSD subjects. Moreover, tolcapone modulated prefrontal connectivity with areas overlapping the default mode network. These findings suggest that enhancing cortical dopamine tone may represent an approach to remediating cognitive and affective dysfunction in individuals with more severe PTSD symptoms.
Asunto(s)
Dopamina , Trastornos por Estrés Postraumático , Encéfalo/metabolismo , Catecol O-Metiltransferasa/metabolismo , Inhibidores de Catecol O-Metiltransferasa , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/tratamiento farmacológicoRESUMEN
We report the structure, chemical composition, O, Al-Mg, He, and Ne isotope systematics of an interplanetary dust particle, "Manchanito". These analyses indicate that Manchanito solidified as refractory glass (with oxidized Fe but reduced Ti) in a chondrule-like formation environment more than 3.2 Myr after CAIs, after which it was exposed to Q-like noble gases in the dissipating solar nebula. Manchanito's He and Ne isotopic composition and concentrations are similar to those measured in samples of comet Wild 2, from which we infer that Manchanito's parent body was a comet. We propose that after formation and exposure to Q-like gases, Manchanito was transported to the outer Solar System where it came into contact with organics and volatile ices on its cometary parent body. Manchanito provides additional evidence that cometary solids have been subjected to energetic processing and large-scale transport in a wide range of environments in the Solar System.
RESUMEN
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
RESUMEN
Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed "electron fraction," which predicts backscatter yield better than mass fraction averaging.
RESUMEN
While structural abnormalities of the dorsolateral prefrontal cortex (DLPFC) may pre-date and predict psychosis onset, the relationships between functional deficits, cognitive and psychosocial impairments has yet to be explored in the at-risk period. An established measure of cognitive control (AXCPT) was administered to demographically matched clinical-high-risk (CHR; n=25), first-episode schizophrenia (FE; n=35), and healthy control (HC; n=35) participants during functional magnetic resonance imaging (fMRI) to investigate these relationships. CHR and FE individuals demonstrated impaired context processing and reduced DLPFC activation relative to HC individuals during increased cognitive control demands. FE and CHR individuals' ability to increase DLPFC activity in response to cognitive control demands was associated with better task performance. Task performance was also associated with severity of disorganization and poverty symptoms in FE participants. These findings support more extensive studies using fMRI to examine the clinical significance of prefrontal cortical functioning in the earliest stages of psychosis.
Asunto(s)
Trastornos del Conocimiento/patología , Cognición , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Trastornos Psicóticos/psicología , Adulto , Estudios de Casos y Controles , Trastornos del Conocimiento/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Trastornos Psicóticos/fisiopatología , Factores de Riesgo , Esquizofrenia/complicaciones , Factores Socioeconómicos , Adulto JovenRESUMEN
The widely cited prefrontal dysfunction - excess subcortical dopamine model of schizophrenia posits that prefrontal deficits give rise to cognitive impairments and the disinhibition of subcortical dopamine release underlying psychosis. While this has been one of the most influential schizophrenia models, only a handful of studies have provided evidence supporting it directly in patients with schizophrenia. We previously demonstrated task-evoked substantia nigra hyperactivity in the context of prefrontal hypofunction and prefrontonigral functional disconnectivity. In addition, nigrostriatal functional connectivity was identified as a potential marker of psychosis. Because patients in this prior study had chronic schizophrenia and were treated with antipsychotics, in the present study we tested whether these findings were confounded by illness chronicity and medication effects by seeking to reproduce these findings in an independent sample of antipsychotic naïve, first episode (FE) patients. We compared event-related fMRI activations from 12 FE patients with 15 demographically matched healthy control subjects during cognitive testing. We found substantia nigra hyperactivity associated with prefrontal hypofunction and prefrontonigral functional disconnectivity, as well as the magnitude of nigrostriatal functional connectivity positively correlating with severity of psychosis. This study adds to the body of evidence supporting the prefrontal-dopamine model of schizophrenia and further validates nigrostriatal functional connectivity as a marker of psychosis.
Asunto(s)
Neostriado/fisiopatología , Corteza Prefrontal/fisiopatología , Esquizofrenia/fisiopatología , Sustancia Negra/fisiopatología , Adulto , Conectoma , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Psicóticos/fisiopatología , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 µm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.
RESUMEN
Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.
RESUMEN
Cognitive control deficits have been consistently documented in patients with schizophrenia. Recent work in cognitive neuroscience has hypothesized a distinction between two theoretically separable modes of cognitive control-reactive and proactive. However, it remains unclear the extent to which these processes are uniquely associated with dysfunctional neural recruitment in individuals with schizophrenia. This functional magnetic resonance imaging (fMRI) study utilized the color word Stroop task and AX Continuous Performance Task (AX-CPT) to tap reactive and proactive control processes, respectively, in a sample of 54 healthy controls and 43 patients with first episode schizophrenia. Healthy controls demonstrated robust dorsolateral prefrontal, anterior cingulate, and parietal cortex activity on both tasks. In contrast, patients with schizophrenia did not show any significant activation during proactive control, while showing activation similar to control subjects during reactive control. Critically, an interaction analysis showed that the degree to which prefrontal activity was reduced in patients versus controls depended on the type of control process engaged. Controls showed increased dorsolateral prefrontal cortex (DLPFC) and parietal activity in the proactive compared to the reactive control task, whereas patients with schizophrenia did not demonstrate this increase. Additionally, patients' DLPFC activity and performance during proactive control was associated with disorganization symptoms, while no reactive control measures showed this association. Proactive control processes and concomitant dysfunctional recruitment of DLPFC represent robust features of schizophrenia that are also directly associated with symptoms of disorganization.
RESUMEN
Solid iron compounds are extremely common in the environment as well as in meteorites and comets. Fe K-edge XANES (X-ray absorption near-edge structure) measurements can be carried out quickly, theoretically allowing one to categorize many areas within a sample or set of samples in a short time. However, interpretation of such data is not straightforward unless one has the appropriate reference spectra, hence a way of classifying an unknown spectrum to a family group (trivalent, divalent, oxide, silicate etc.) is required. Methods of abstracting Fe XANES spectra to produce pairs of variables which, when plotted, cluster in distinct regions depending on the family are presented. For instance, divalent minerals fall in a different region than trivalent minerals, and sulfides in a different region than oxides.
Asunto(s)
Compuestos de Hierro/química , Análisis Espectral , Rayos XRESUMEN
Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet 81P/Wild 2 are indisputable cometary matter available for laboratory study. Here we report measurements of noble gases in Stardust material. Neon isotope ratios are within the range observed in "phase Q," a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays 3He/4He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are probably carried in high-temperature igneous grains similar to particles found in other Stardust studies. Collectively, the evidence points to gas acquisition in a hot, high ion-flux nebular environment close to the young Sun.
RESUMEN
Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.
RESUMEN
Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.
Asunto(s)
Isótopos de Carbono/análisis , Deuterio/análisis , Isótopos/análisis , Meteoroides , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Hidrógeno/análisis , Neón/análisis , Gases Nobles/análisis , Nave EspacialRESUMEN
Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.