RESUMEN
Carnosine and anserine supplementation markedLy reduce diabetic nephropathy in rodents. The mode of nephroprotective action of both dipeptides in diabetes, via local protection or improved systemic glucose homeostasis, is uncertain. Global carnosinase-1 knockout mice (Cndp1-KO) and wild-type littermates (WT) on a normal diet (ND) and high fat diet (HFD) (n = 10/group), with streptozocin (STZ)-induced type-1 diabetes (n = 21-23/group), were studied for 32 weeks. Independent of diet, Cndp1-KO mice had 2- to 10-fold higher kidney anserine and carnosine concentrations than WT mice, but otherwise a similar kidney metabolome; heart, liver, muscle and serum anserine and carnosine concentrations were not different. Diabetic Cndp1-KO mice did not differ from diabetic WT mice in energy intake, body weight gain, blood glucose, HbA1c, insulin and glucose tolerance with both diets, whereas the diabetes-related increase in kidney advanced glycation end-product and 4-hydroxynonenal concentrations was prevented in the KO mice. Tubular protein accumulation was lower in diabetic ND and HFD Cndp1-KO mice, interstitial inflammation and fibrosis were lower in diabetic HFD Cndp1-KO mice compared to diabetic WT mice. Fatalities occurred later in diabetic ND Cndp1-KO mice versus WT littermates. Independent of systemic glucose homeostasis, increased kidney anserine and carnosine concentrations reduce local glycation and oxidative stress in type-1 diabetic mice, and mitigate interstitial nephropathy in type-1 diabetic mice on HFD.
RESUMEN
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.