Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mamm Genome ; 35(1): 68-76, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37979047

RESUMEN

Animal models of diabetes, such as db/db mice, are a useful tool for deciphering the genetic background of molecular changes at the initial stages of disease development. Our goal was to find early transcriptomic changes in three tissues involved in metabolism regulation in db/db mice: adipose tissue, muscle tissue and liver tissue. Nine animals (three per time point) were studied. Tissues were collected at 8, 12 and 16 weeks of age. Transcriptome-wide analysis was performed using mRNA-seq. Libraries were sequenced on NextSeq (Illumina). Differential expression (DE) analysis was performed with edgeR. The analysis of the gene expression profile shared by all three tissues revealed eight upregulated genes (Irf7, Sp100, Neb, Stat2, Oas2, Rtp4, H2-T24 and Oasl2) as early as between 8 and 12 weeks of age. The most pronounced differences were found in liver tissue: nine DE genes between 8 and 12 weeks of age (Irf7, Ly6a, Ly6g6d, H2-Dma, Pld4, Ly86, Fcer1g, Ly6e and Idi1) and five between 12 and 16 weeks of age (Irf7, Plac8, Ifi44, Xaf1 and Ly6a) (adj. p-value < 0.05). The mitochondrial transcriptomic profile also changed with time: we found two downregulated genes in mice between 8 and 12 weeks old (Ckmt2 and Cox6a2) and five DE genes between 12 and 16 weeks of age (Mavs, Tomm40L, Mtfp1, Ckmt2 and Cox6a2). The KEGG pathway analysis showed significant enrichment in pathways related to the autoimmune response and cytosolic DNA sensing. Our results suggest an important involvement of the immunological response, mainly cytosolic nucleic acid sensing, and mitochondrial signalling in the early stages of diabetes and obesity.


Asunto(s)
Diabetes Mellitus , Ácidos Nucleicos , Ratones , Animales , Transcriptoma , Perfilación de la Expresión Génica , Ratones Endogámicos , Antígenos de Superficie , Glicoproteínas de Membrana
2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474077

RESUMEN

Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.


Asunto(s)
Esteroides Anabólicos Androgénicos , FN-kappa B , Porcinos , Animales , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142211

RESUMEN

The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.


Asunto(s)
Epigenómica , alfa-Galactosidasa , Animales , Humanos , alfa-Galactosidasa/genética , Animales Modificados Genéticamente , Epigénesis Genética , Epítopos , Fibroblastos , Antígenos HLA , Ácidos Hidroxámicos , Lectinas , Proteómica , ARN Mensajero , Porcinos , Trasplante Heterólogo
4.
Histochem Cell Biol ; 156(4): 349-362, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34269874

RESUMEN

Endothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


Asunto(s)
Células Endoteliales/citología , Ovario/citología , Hipófisis/citología , Células Madre/citología , Animales , Diferenciación Celular , Femenino , Porcinos
5.
J Cardiovasc Electrophysiol ; 32(8): 2269-2274, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34164879

RESUMEN

INTRODUCTION: The muscular sleeves (or myocardial extensions) derived from the right ventricle infundibulum myocardium are considered the true anatomic substrate for right ventricular outflow tract arrhythmias. METHODS: Pulmonary valve specimens obtained from 65 donors (24.6% females, mean age 45.9 ± 15.8 years) were investigated micro-anatomically. Specimens were histologically processed, stained with Masson's Trichrome, and examined under a light microscope. RESULTS: The myocardial extensions were present in the left anterior pulmonary valve sinus in 86.2% of cases, in the right anterior sinus in 89.2% of cases and in 90.7% of cases in the posterior sinus (p = .699). In 69.2% of examined hearts, the myocardial extensions were present in all sinuses. The mean height of the extensions was 4.12 ± 1.76 (left anterior) versus 3.69 ± 1.47 (right anterior) versus 4.28 ± 1.73 mm (posterior) (p = .137). The myocardial extensions occupied an average of 28.9 ± 10.4% of the left anterior sinus, 26.7 ± 11.2% of the right anterior sinus, and 31.9 ± 11.3% of the posterior sinus (p = .044). Sleeves extending beyond the fibro-arterial transition zone were present in at least one sinus in 33.8% of hearts (in 7.7% (5/65) of the left and right anterior sinuses and 21.5% (14/65) of posterior sinus, p = .021). CONCLUSIONS: The myocardial extensions of the pulmonary valve are common anatomical entities. Although the length of the myocardial sleeves is similar in all pulmonary valve sinuses, their relative extent is greatest in the posterior sinus. Long sleeves that spread beyond the fibro-arterial transition zone were observed in one-third of hearts, predominantly in the posterior sinus. Myocardial and fibrous tissue layer thicknesses varied considerably.


Asunto(s)
Ablación por Catéter , Válvula Pulmonar , Adulto , Arritmias Cardíacas/cirugía , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/cirugía , Humanos , Masculino , Persona de Mediana Edad , Miocardio , Válvula Pulmonar/diagnóstico por imagen , Válvula Pulmonar/cirugía
6.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573215

RESUMEN

This study was conducted to explore whether trichostatin A-assisted epigenomic modulation (TSA-EM) can affect the expression of not only recombinant human α1,2-fucosyltransferase (rhα1,2-FT) and α-galactosidase A (rhα-Gal A) immune system enzymes but also Galα1→3Gal epitopes in ex vivo proliferating adult cutaneous fibroblast cells (ACFCs) derived from hFUT2×hGLA bi-transgenic pigs that had been produced for the needs of future xenotransplantation efforts. The ACFC lines were treated with 50 nM TSA for 24 h and then the expression profiles of rhα1,2-FT and rhα-Gal A enzymes were analyzed by Western blot and immunofluorescence. The expression profiles of the Galα1→3Gal epitope were determined by lectin blotting and lectin fluorescence. The ACFCs derived from non-transgenic (nTG) pigs were served as the negative (TSA-) and positive (TSA+) control groups. For both hFUT2×hGLA and nTG samples, the expression levels of α1,2-FT and α-Gal A proteins in TSA+ cells were more than twofold higher in comparison to TSA- cells. Moreover, a much lower expression of the Galα1→3Gal epitopes was shown in TSA- hFUT2×hGLA cells as compared to the TSA- nTG group. Interestingly, the levels of Galα1→3Gal expression in TSA-treated hFUT2×hGLA and nTG ACFCs were significantly higher than those noticed for their TSA-untreated counterparts. Summing up, ex vivo protection of effectively selected bi-transgenic ACFC lines, in which TSA-dependent epigenetic transformation triggered the enhancements in reprogrammability and subsequent expression of hFUT2 and hGLA transgenes and their corresponding transcripts, allows for cryopreservation of nuclear donor cells, nuclear-transferred female gametes, and resultant porcine cloned embryos. The latter can be used as a cryogenically conserved genetic resource of biological materials suitable for generation of bi-transgenic cloned offspring in pigs that is targeted at biomedical research in the field of cell/tissue xenotransplantation.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Epítopos/metabolismo , Rechazo de Injerto/prevención & control , Ácidos Hidroxámicos/farmacología , Trasplante Heterólogo/efectos adversos , Animales , Animales Modificados Genéticamente , Línea Celular , Clonación de Organismos/métodos , Criopreservación , Embrión de Mamíferos , Epítopos/genética , Epítopos/inmunología , Fibroblastos , Fucosiltransferasas/genética , Fucosiltransferasas/inmunología , Fucosiltransferasas/metabolismo , Técnicas de Inactivación de Genes , Rechazo de Injerto/inmunología , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Piel/citología , Porcinos , Trasplante Heterólogo/métodos , alfa-Galactosidasa/genética , alfa-Galactosidasa/inmunología , alfa-Galactosidasa/metabolismo , Galactósido 2-alfa-L-Fucosiltransferasa
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769230

RESUMEN

Nandrolone (Ndn) and boldenone (Bdn), the synthetic testosterone analogues with strong anabolic effects, despite being recognized as potentially carcinogenic compounds, are commonly abused by athletes and bodybuilders, which includes women, worldwide. This study tested the hypothesis that different doses of Ndn and Bdn can initiate neoplastic transformation of porcine ovarian putative stem cells (poPSCs). Immunomagnetically isolated poPSCs were expanded ex vivo in the presence of Ndn or Bdn, for 7 and 14 days. Results show that pharmacological doses of both Ndn and Bdn, already after 7 days of poPSCs culture, caused a significant increase of selected, stemness-related markers of cancer cells: CD44 and CD133. Notably, Ndn also negatively affected poPSCs growth not only by suppressing their proliferation and mitochondrial respiration but also by inducing apoptosis. This observation shows, for the first time, that chronic exposure to Ndn or Bdn represents a precondition that might enhance risk of poPSCs neoplastic transformation. These studies carried out to accomplish detailed molecular characterization of the ex vivo expanded poPSCs and their potentially cancerous derivatives (PCDs) might be helpful to determine their suitability as nuclear donor cells (NDCs) for further investigations focused on cloning by somatic cell nuclear transfer (SCNT). Such investigations might also be indispensable to estimate the capabilities of nuclear genomes inherited from poPSCs and their PCDs to be epigenetically reprogrammed (dedifferentiated) in cloned pig embryos generated by SCNT. This might open up new possibilities for biomedical research aimed at more comprehensively recognizing genetic and epigenetic mechanisms underlying not only tumorigenesis but also reversal/retardation of pro-tumorigenic intracellular events.


Asunto(s)
Transformación Celular Neoplásica , Reprogramación Celular/efectos de los fármacos , Nandrolona/efectos adversos , Neoplasias Ováricas , Ovario , Células Madre , Testosterona/análogos & derivados , Animales , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Nandrolona/farmacología , Neoplasias Ováricas/inducido químicamente , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Ovario/patología , Células Madre/metabolismo , Células Madre/patología , Porcinos , Testosterona/efectos adversos , Testosterona/farmacología
8.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575846

RESUMEN

Pig-to-human xenotransplantation seems to be the response to the contemporary shortage of tissue/organ donors. Unfortunately, the phylogenetic distance between pig and human implies hyperacute xenograft rejection. In this study, we tested the hypothesis that combining expression of human α1,2-fucosyltransferase (hFUT2) and α-galactosidase A (hGLA) genes would allow for removal of this obstacle in porcine transgenic epidermal keratinocytes (PEKs). We sought to determine not only the expression profiles of recombinant human α1,2-fucosyltransferase (rhα1,2-FT) and α-galactosidase A (rhα-Gal A) proteins, but also the relative abundance (RA) of Galα1→3Gal epitopes in the PEKs stemming from not only hFUT2 or hGLA single-transgenic and hFUT2×hGLA double-transgenic pigs. Our confocal microscopy and Western blotting analyses revealed that both rhα1,2-FT and rhα-Gal A enzymes were overabundantly expressed in respective transgenic PEK lines. Moreover, the semiquantitative levels of Galα1→3Gal epitope that were assessed by lectin fluorescence and lectin blotting were found to be significantly diminished in each variant of genetically modified PEK line as compared to those observed in the control nontransgenic PEKs. Notably, the bi-transgenic PEKs were characterized by significantly lessened (but still detectable) RAs of Galα1→3Gal epitopes as compared to those identified for both types of mono-transgenic PEK lines. Additionally, our current investigation showed that the coexpression of two protective transgenes gave rise to enhanced abrogation of Galα→3Gal epitopes in hFUT2×hGLA double-transgenic PEKs. To summarize, detailed estimation of semiquantitative profiles for human α-1,2-FT and α-Gal A proteins followed by identification of the extent of abrogating the abundance of Galα1→3Gal epitopes in the ex vivo expanded PEKs stemming from mono- and bi-transgenic pigs were found to be a sine qua non condition for efficiently ex situ protecting stable lines of skin-derived somatic cells inevitable in further studies. The latter is due to be focused on determining epigenomic reprogrammability of single- or double-transgenic cell nuclei inherited from adult cutaneous keratinocytes in porcine nuclear-transferred oocytes and corresponding cloned embryos. To our knowledge, this concept was shown to represent a completely new approach designed to generate and multiply genetically transformed pigs by somatic cell cloning for the needs of reconstructive medicine and dermoplasty-mediated tissue engineering of human integumentary system.


Asunto(s)
Células Epidérmicas/metabolismo , Fucosiltransferasas/genética , Expresión Génica , Queratinocitos/metabolismo , alfa-Galactosidasa/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Porcinos , Galactósido 2-alfa-L-Fucosiltransferasa
9.
Theriogenology ; 155: 256-268, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810809

RESUMEN

Until recently, the mammalian ovary was considered to consist of fully differentiated tissues, but evidence for the presence of adult stem cells in this organ appeared. The differentiation potential of these cells, referred to as putative stem cells, is not well defined. Porcine ovarian putative stem cells (poPSCs) were immunomagnetically isolated from postnatal pig ovaries based on the presence of the SSEA-4 surface marker protein. First, they were cultured in the undifferentiated state. After the third passage, a novel 7-day culture method inducing their differentiation into neural-like cells by the addition of forskolin (FSK), retinoic acid (RA) and basic fibroblast growth factor (bFGF) to the culture medium was applied. After 7 days, poPSCs successfully differentiated into neural-like cells, as evidenced by neural morphology and the presence of the neuronal markers nestin, NeuN, and GFAP, as confirmed by immunofluorescence, western blot, and real-time PCR. Electrophysiological analysis of potassium and sodium channel activity (patch clamp) confirmed that they indeed differentiated into neurons. The plasticity of poPSCs offers an excellent opportunity, especially in the field of neuroscience, since they can differentiate into neurons or glial cells. Although poPSCs might not be pluripotent cells, they also escape the rigid classification framework of adult stem cells.


Asunto(s)
Ovario , Células Madre , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Neuronas , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA