Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987758

RESUMEN

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Asunto(s)
Asma , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Ratones , Alérgenos , Colágeno , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cloruro de Metacolina/farmacología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-ret/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39437757

RESUMEN

Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it comes important to understand the impact of aging-associated airway structure and function changes towards pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors (including neurotrophins such as brain-derived neurotrophic factor (BDNF)) and pro-inflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wildtype mice or smooth muscle-specific BDNF knockout mice at 4, 18 and 24 months of age were intranasally exposed to mixed allergens (ovalbumin, aspergillus, Alternaria, and house dust mite) over 4 weeks. Assessing lung function by FlexiVent, we found that compared with 4 month old mice, 18 and 24 month old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53 and phospho-gH2A.X. Our data suggest that aging associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.

3.
J Cell Physiol ; 236(12): 8184-8196, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34170009

RESUMEN

Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Músculo Liso/metabolismo , Sistema Respiratorio/metabolismo , Asma/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , Neurturina/metabolismo
4.
FASEB J ; 33(2): 3024-3034, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30351991

RESUMEN

Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.


Asunto(s)
Asma/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Hiperreactividad Bronquial/etiología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/fisiología , Músculo Liso/metabolismo , Proteínas Tirosina Quinasas/fisiología , Sistema Respiratorio/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Alérgenos/efectos adversos , Animales , Asma/inducido químicamente , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/patología , Femenino , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones , Ratones Noqueados , Ratones Transgénicos , Contracción Muscular , Músculo Liso/citología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología
5.
Am J Respir Cell Mol Biol ; 61(1): 51-60, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30508396

RESUMEN

Supplemental O2 (hyperoxia; 30-90% O2) is a necessary intervention for premature infants, but it contributes to development of neonatal and pediatric asthma, necessitating better understanding of contributory mechanisms in hyperoxia-induced changes to airway structure and function. In adults, environmental stressors promote formation of senescent cells that secrete factors (senescence-associated secretory phenotype), which can be inflammatory and have paracrine effects that enhance chronic lung diseases. Hyperoxia-induced changes in airway structure and function are mediated in part by effects on airway smooth muscle (ASM). In the present study, using human fetal ASM cells as a model of prematurity, we ascertained the effects of clinically relevant moderate hyperoxia (40% O2) on cellular senescence. Fetal ASM exposed to 40% O2 for 7 days exhibited elevated concentrations of senescence-associated markers, including ß-galactosidase; cell cycle checkpoint proteins p16, p21, and p-p53; and the DNA damage marker p-γH2A.X (phosphorylated γ-histone family member X). The combination of dasatinib and quercetin, compounds known to eliminate senescent cells (senolytics), reduced the number of hyperoxia-exposed ß-galactosidase-, p21-, p16-, and p-γH2A.X-positive ASM cells. The senescence-associated secretory phenotype profile of hyperoxia-exposed cells included both profibrotic and proinflammatory mediators. Naive ASM exposed to media from hyperoxia-exposed senescent cells exhibited increased collagen and fibronectin and higher contractility. Our data show that induction of cellular senescence by hyperoxia leads to secretion of inflammatory factors and has a functional effect on naive ASM. Cellular senescence in the airway may thus contribute to pediatric airway disease in the context of sequelae of preterm birth.


Asunto(s)
Senescencia Celular , Feto/patología , Hiperoxia/patología , Pulmón/embriología , Miocitos del Músculo Liso/patología , Biomarcadores/metabolismo , Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Citocinas/metabolismo , Daño del ADN , Dasatinib/farmacología , Etopósido/farmacología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Miocitos del Músculo Liso/efectos de los fármacos , Fenotipo , Quercetina/farmacología
6.
J Cell Physiol ; 234(8): 14187-14197, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30624783

RESUMEN

Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.


Asunto(s)
Señalización del Calcio/genética , Pulmón/crecimiento & desarrollo , Mioblastos/metabolismo , Receptores Sensibles al Calcio/genética , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Feto , Humanos , Pulmón/embriología , Pulmón/metabolismo , Compuestos Macrocíclicos/farmacología , Músculo Liso/metabolismo , Naftalenos/farmacología , Oxazoles/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L525-L536, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411059

RESUMEN

Hyperoxia exposure in premature infants increases the risk of subsequent lung diseases, such as asthma and bronchopulmonary dysplasia. Fibroblasts help maintain bronchial and alveolar integrity. Thus, understanding mechanisms by which hyperoxia influences fibroblasts is critical. Cellular senescence is increasingly recognized as important to the pathophysiology of multiple diseases. We hypothesized that clinically relevant moderate hyperoxia (<50% O2) induces senescence in developing fibroblasts. Using primary human fetal lung fibroblasts, we investigated effects of 40% O2 on senescence, endoplasmic reticulum (ER) stress, and autophagy pathways. Fibroblasts were exposed to 21% or 40% O2 for 7 days with etoposide as a positive control to induce senescence, evaluated by morphological changes, ß-galactosidase activity, and DNA damage markers. Senescence-associated secretory phenotype (SASP) profile of inflammatory and profibrotic markers was further assessed. Hyperoxia decreased proliferation but increased cell size. SA-ß-gal activity and DNA damage response, cell cycle arrest in G2/M phase, and marked upregulation of phosphorylated p53 and p21 were noted. Reduced autophagy was noted with hyperoxia. mRNA expression of proinflammatory and profibrotic factors (TNF-α, IL-1, IL-8, MMP3) was elevated by hyperoxia or etoposide. Hyperoxia increased several SASP factors (PAI-1, IL1-α, IL1-ß, IL-6, LAP, TNF-α). The secretome of senescent fibroblasts promoted extracellular matrix formation by naïve fibroblasts. Overall, we demonstrate that moderate hyperoxia enhances senescence in primary human fetal lung fibroblasts with reduced autophagy but not enhanced ER stress. The resulting SASP is profibrotic and may contribute to abnormal repair in the lung following hyperoxia.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hiperoxia/genética , Oxígeno/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proliferación Celular/efectos de los fármacos , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico/efectos de los fármacos , Etopósido/farmacología , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Feto , Fibroblastos/citología , Fibroblastos/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Hiperoxia/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pulmón/citología , Pulmón/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Cultivo Primario de Células , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L969-L982, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28258108

RESUMEN

Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals.


Asunto(s)
Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/inmunología , División Celular , Eosinófilos/patología , Inmunización , Animales , Bradicardia/complicaciones , Bradicardia/inmunología , Bradicardia/patología , Bradicardia/fisiopatología , Bromodesoxiuridina/metabolismo , Hiperreactividad Bronquial/sangre , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar/inmunología , Broncoconstricción/efectos de los fármacos , División Celular/efectos de los fármacos , Estimulación Eléctrica , Eosinófilos/efectos de los fármacos , Etanercept/farmacología , Femenino , Cobayas , Linfocitos/efectos de los fármacos , Linfocitos/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Cloruro de Metacolina/farmacología , Monocitos/efectos de los fármacos , Monocitos/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Ozono , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
9.
Res Rep Health Eff Inst ; (191): 1-41, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29659241

RESUMEN

Introduction: Exposure to ozone induces deleterious responses in the airways that include shortness of breath, inflammation, and bronchoconstriction. People with asthma have increased airway sensitivity to ozone and other irritants. Dr. Allison Fryer and colleagues addressed how exposure to ozone affects the immune and physiological responses in guinea pigs. Guinea pigs are considered a useful animal model for studies of respiratory and physiological responses in humans; their response to airborne allergens is similar to that in humans and shares some features of allergic asthma. Fryer and colleagues had previously observed that within 24 hours of exposure, ozone not only induced bronchoconstriction but also stimulated the production of new cells in the bone marrow, where all white blood cells develop. As a result of ozone exposure, increased numbers of newly synthesized white blood cells, particularly eosinophils, moved into the blood and lungs. The central hypothesis of the current study was that newly synthesized eosinophils recruited to the lungs 3 days after ozone exposure were beneficial to the animals because they reduced ozoneinduced bronchoconstriction. The investigators also hypothesized that the beneficial effect seen in normal (nonsensitized) animals was lost in animals that had been injected with an allergen, ovalbumin (sensitized). They also planned to explore the effects of inhibitors of certain cytokines (cellsignaling molecules). Immune responses in sensitized animals are dominated by a Th2 pattern, which is characterized by the synthesis of cytokines (interleukin [IL]-4, IL-5, and IL-13) and the Th2 subset of CD4+ T lymphocytes and the cells they activate (predominantly eosinophils, and B lymphocytes that switch to making immunoglobulin E [IgE]). Thus, sensitized animals were used as a model of allergic humans, whose immune responses tend to be dominated by IgE. Approach: Fryer and colleagues exposed normal and sensitized (allergic) guinea pigs to 2 ppm ozone or filtered air for 4 hours and measured changes in cell numbers and airway responses 1 or 3 days later. They counted the numbers of eosinophils and other white blood cells (macrophages, neutrophils, and lymphocytes) in bone marrow, blood, and bronchoalveolar lung lavage fluid. The investigators also measured important physiological responses, including bronchoconstriction. Some animals were pretreated with etanercept and monoclonal anti-IL-5, which block tumor necrosis factor-a (TNFa) and IL-5, respectively. TNFa and IL-5 blockers have been used to treat patients with asthma. A key feature of the study was a technique to distinguish which white blood cells were synthesized after exposure from those that already existed, by injecting animals with bromodeoxyuridine (BrdU). BrdU is a thymidine analogue that is incorporated into the DNA of dividing cells, serving as a marker of newly produced cells. Therefore, a snapshot can be obtained of the proportion of newly synthesized (BrdU-positive) versus pre-existing (BrdU-negative) cell types. Key results: 1. Allergic and normal animals differed in the time course of bronchoconstriction and changes in cell types after ozone exposure. In normal animals, bronchoconstriction increased substantially at day 1 but decreased by day 3 after ozone exposure. In contrast, in allergic animals bronchoconstriction remained high at day 3. Ozone also increased the percentage of newly formed, BrdU2 positive eosinophils in the bone marrow and lungs of normal but not allergic animals. 2. Pretreatment with the TNFa blocker etanercept had complex effects, which differed between normal and allergic animals. In normal animals, etanercept decreased ozone-induced new synthesis of eosinophils in the bone marrow and blocked eosinophil migration to the lung; it also increased bronchoconstriction at day 3 (relative to day 1 without etanercept). In allergic animals, etanercept had no effect on any cell type in the bone marrow or lung after exposure to ozone and did not change bronchoconstriction compared with allergic animals not treated with etanercept. Etanercept tended to increase the numbers of blood monocytes and lymphocytes in air- and ozone-exposed normal and allergic animals at day 3, but had no effect on eosinophils in blood at this time point. This was one of the few statistically significant findings in the blood of exposed animals in the study. 3. Anti-IL-5 reduced bronchoconstriction at day 3 after exposure of allergic animals to ozone. In contrast, bronchoconstriction was greatly increased in normal animals treated with anti-IL-5. Conclusions: Fryer and colleagues explored the airway and cellular responses in guinea pigs exposed to ozone. The HEI Review Committee, which conducted an independent review of the study, agreed that the findings supported the authors' hypothesis (1) that exposure to ozone stimulates production of eosinophils in bone marrow, (2) that these newly formed eosinophils migrate to the lungs, and (3) that those eosinophils play a delayed but potentially beneficial role in reducing ozone-induced inflammation in the airways of healthy normal animals, but not in allergen-sensitized animals. The Committee also agreed that guinea pigs were a good model for studying responses to an allergen, because a major subtype of asthma (the high Th2 or allergic type) is associated with high levels of eosinophils in the blood. A novel finding was that the TNFa blocker etanercept decreased ozone-induced formation of eosinophils in the bone marrow and blocked eosinophil migration to the lung in normal animals. However, because injecting etanercept had little effect on eosinophils and did not decrease bronchoconstriction in allergic guinea pigs, the potential for treating patients with allergic asthma with TNFa blockers is uncertain. This is consistent with the poor performance of TNFa blockers in clinical studies of asthma treatment. Blocking the cytokine IL-5 with an anti-IL-5 antibody substantially decreased bronchoconstriction in sensitized animals. This suggests that therapies targeting IL-5 and eosinophils would be promising in at least some types of asthma. The Committee expressed caution toward experiments with cytokine blockers, both in animal models and humans, because such blockers are often not specific to a particular cell type and may differ at different sites in the body. Without further detailed confirmation of the effects of the blockers, interpreting these experiments can be challenging. The Committee concluded that the study by Fryer and colleagues raises several intriguing directions for future research, including exploring ways in which newly formed eosinophils differ from pre-existing ones, and how such findings apply to humans with allergy or asthma.


Asunto(s)
Broncoconstricción/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Eosinófilos/inmunología , Ozono/administración & dosificación , Ozono/toxicidad , Eosinofilia Pulmonar/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Administración por Inhalación , Animales , Broncoconstricción/inmunología , Citocinas/inmunología , Cobayas , Ovalbúmina
10.
J Nanobiotechnology ; 10: 6, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22284364

RESUMEN

BACKGROUND: The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. METHODS: We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. RESULTS: Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. CONCLUSION: We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix. The coated nanosprings enhance normal human osteoblasts cellular behaviors needed for improving osseointegration of orthopedic materials. Thus, metal-coated nanosprings represent a novel biomaterial that could be exploited for improving success rates of orthopedic implant procedures.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Matriz Extracelular , Nanoestructuras/química , Osteoblastos/citología , Dióxido de Silicio , Fosfatasa Alcalina/metabolismo , Aleaciones , Materiales Biomiméticos , Calcificación Fisiológica/fisiología , Calcio/metabolismo , Diferenciación Celular , Proliferación Celular , Vidrio , Oro/química , Humanos , Nanocables , Osteoblastos/metabolismo , Osteogénesis/fisiología , Titanio/química
11.
PLoS One ; 16(7): e0254710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324543

RESUMEN

Lung function declines as people age and their lungs become stiffer. With an increasing elderly population, understanding mechanisms that contribute to these structural and functional changes in the aging lung is important. Part of the aging process is characterized by thicker, more fibrotic airways, and senile emphysema caused by changes in lung parenchyma. There is also senescence, which occurs throughout the body with aging. Here, using human airway smooth muscle (ASM) cells from patients in different age groups, we explored senescence pathways and changes in intracellular calcium signaling and extracellular matrix (ECM) deposition to elucidate potential mechanisms by which aging leads to thicker and stiffer lungs. Senescent markers p21, γH2AX, and ß-gal, and some senescence-associated secretory proteins (SASP) increased with aging, as shown by staining and biochemical analyses. Agonist-induced intracellular Ca2+ responses, measured using fura-2 loaded cells and fluorescence imaging, increased with age. However, biochemical analysis showed that expression of the following markers decreased with age: M3 muscarinic receptor, TRPC3, Orai1, STIM1, SERCA2, MMP2 and MMP9. In contrast, collagen III, and fibronectin deposition increased with age. These data show that senescence increases in the aging airways that is associated with a stiffer but surprisingly greater intracellular calcium signaling as a marker for contractility. ASM senescence may enhance fibrosis in a feed forward loop promoting remodeling and altered calcium storage and buffering.


Asunto(s)
Envejecimiento , Señalización del Calcio , Matriz Extracelular , Músculo Liso , Anciano , Proliferación Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Miocitos del Músculo Liso/metabolismo , Enfisema Pulmonar/metabolismo
12.
Sci Rep ; 11(1): 14386, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257337

RESUMEN

Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. To this end, the gene expression from human ASM was measured with RNA-Seq in non-asthmatic and asthmatic groups. The gene network for the asthmatic and non-asthmatic group was constructed by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). Furthermore, we identified differentially connected or co-expressed genes in each group. The asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. Additionally, the DEGs, TFs, and differentially connected genes over-represented in the pathways involved with herpes simplex virus infection, Hippo and TGF-ß signaling, adherens junctions, gap junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates the expression of gene-targets as an adaptive response to asthma. These multiple gene interactions pointed out novel targets and pathways for asthma exacerbations.


Asunto(s)
Miocitos del Músculo Liso , Sistema Respiratorio , Transcriptoma , Asma , Humanos , Músculo Liso , Transducción de Señal
13.
Expert Rev Respir Med ; 13(3): 291-300, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30686114

RESUMEN

INTRODUCTION: Flask-shaped plasma membrane (PM) invaginations called caveolae and their constitutive caveolin and cavin proteins regulate cellular function via plasma membrane and intracellular signal transduction pathways. Caveolae are present in a variety of cells in the lung including airway smooth muscle (ASM) where they interact with other proteins, receptors, and ion channels and thereby have the potential to affect both normal and disease processes such as inflammation, contractility, and fibrosis. Given their involvement in cell signaling, caveolae may play important roles in mediating and modulating aging processes, and contribute to lung diseases of aging. Areas covered: This review provides a broad overview of the current state of knowledge regarding caveolae and their constituent proteins in lung diseases in the elderly and identifies potential mechanisms that can be targeted for future therapies. Expert Commentary: Caveolin-1 may play a protective role in lung disease. What is less clear is whether altered caveolin-1 with aging is a natural process, or a biomarker of disease progression in the elderly.


Asunto(s)
Envejecimiento , Caveolas/metabolismo , Caveolina 1/metabolismo , Inflamación , Enfermedades Pulmonares/metabolismo , Transducción de Señal , Animales , Caveolina 1/fisiología , Humanos , Enfermedades Pulmonares/fisiopatología , Contracción Muscular , Músculo Liso/metabolismo , Músculo Liso/fisiología
14.
JCI Insight ; 3(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385725

RESUMEN

Patients with severe, treatment-refractory asthma are at risk for death from acute exacerbations. The cytokine IL17A has been associated with airway inflammation in severe asthma, and novel therapeutic targets within this pathway are urgently needed. We recently showed that IL17A increases airway contractility by activating the procontractile GTPase RhoA. Here, we explore the therapeutic potential of targeting the RhoA pathway activated by IL17A by inhibiting RhoA guanine nucleotide exchange factors (RhoGEFs), intracellular activators of RhoA. We first used a ribosomal pulldown approach to profile mouse airway smooth muscle by qPCR and identified Arhgef12 as highly expressed among a panel of RhoGEFs. ARHGEF12 was also the most highly expressed RhoGEF in patients with asthma, as found by RNA sequencing. Tracheal rings from Arhgef12-KO mice and WT rings treated with a RhoGEF inhibitor had evidence of decreased contractility and RhoA activation in response to IL17A treatment. In a house dust mite model of allergic sensitization, Arhgef12-KO mice had decreased airway hyperresponsiveness without effects on airway inflammation. Taken together, our results show that Arhgef12 is necessary for IL17A-induced airway contractility and identify a therapeutic target for severe asthma.


Asunto(s)
Asma/metabolismo , Interleucina-17/metabolismo , Contracción Muscular/efectos de los fármacos , Hipersensibilidad Respiratoria/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/efectos de los fármacos , Anciano , Animales , Asma/tratamiento farmacológico , Asma/fisiopatología , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/farmacología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Contracción Muscular/fisiología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Análisis de Secuencia de ARN/métodos , Índice de Severidad de la Enfermedad , Proteína de Unión al GTP rhoA/metabolismo
15.
Physiol Rep ; 5(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29242307

RESUMEN

Ozone is an atmospheric pollutant that causes lung inflammation and airway hyperresponsiveness. Ozone's effects occur in two distinct phases that are mediated by different populations of eosinophils. In the acute phase 1 day after exposure, mature airway-resident eosinophils alter parasympathetic nerve function that results in airway hyperresponsiveness. At this time point, the severity of hyperresponsiveness correlates with the number of eosinophils in close proximity to airway nerves, but not with eosinophils in bronchoalveolar lavage. Three days later, newly divided eosinophils are recruited to airways by a tumor necrosis factor-α-dependent mechanism. These new eosinophils paradoxically attenuate ozone-induced airway hyperresponsiveness. Ozone's effects on airway tissue eosinophils and nerve-associated eosinophils 3 days after exposure are unknown. Thus, we tested ozone's effects on eosinophils in airway subepithelium and around airway nerves 1 and 3 days after ozone in nonsensitized and ovalbumin-sensitized guinea pigs with or without the tumor necrosis factor-α antagonist, etanercept, and compared changes in eosinophils with ozone-induced airway hyperresponsiveness. More eosinophils were present in small, noncartilaginous airways and along small airway nerves compared to large cartilaginous airways in all treatment groups. The number of airway and nerve-associated eosinophils were unaffected 1 day after ozone exposure, whereas significantly fewer airway eosinophils were present 3 days later. Airway and nerve-associated eosinophils were also decreased in small airways 3 days after ozone in sensitized animals. These changes were blocked by etanercept. Airway eosinophils, but not nerve-associated or bronchoalveolar lavage eosinophils correlated with airway hyperresponsiveness 3 days after ozone. Our findings indicate ozone causes persistent alterations in airway eosinophils and reinforce the importance of characterizing eosinophils' effects within distinct airway compartments.


Asunto(s)
Asma/inmunología , Movimiento Celular , Eosinófilos/efectos de los fármacos , Ozono/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Asma/etiología , Asma/patología , Eosinófilos/inmunología , Eosinófilos/fisiología , Etanercept/farmacología , Femenino , Cobayas , Inmunosupresores/farmacología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Sistema Respiratorio/inervación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA