Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharm Res ; 40(7): 1865-1872, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37237165

RESUMEN

PURPOSE: Whey protein isolate (WPI) has previously been shown to be a promising new excipient for the development of amorphous solid dispersions (ASD) at a high drug loading of 50% (w/w). Whilst WPI is a protein mixture, comprising mainly the three proteins ß-lactoglobulin (BLG), α-lactalbumin (ALA), casein glycomacropeptides (CGMP), the individual contributions of these three proteins to the overall performance of whey protein based ASDs has still not been investigated. In addition, the limitations of the technology at even higher drug loadings (i.e., more than 50%) have not yet been explored. In this study, BLG, ALA, CGMP and WPI were each prepared as ASDs with the two poorly water-soluble drugs (Compound A and Compound B) at 50%, 60% and 70% drug loadings. METHODS: Solid state characterization, dissolution rate and physical stability of the obtained samples were analyzed. RESULTS: All the obtained samples were amorphous and showed faster dissolution rates compared to the respective pure crystalline drugs. However, the BLG based formulations-at least for Compound A-were outperforming the other ASDs in terms of stability, dissolution enhancement and solubility increase. CONCLUSION: Overall, the study confirmed that the investigated whey proteins showed their potential in developing ASDs even at high drug loadings of up to 70%.


Asunto(s)
Liberación de Fármacos , Proteína de Suero de Leche , Cristalización , Solubilidad
2.
Xenobiotica ; 49(1): 13-21, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29299977

RESUMEN

1. The utility of 1-aminobenzotriazole (ABT), incorporated in food, has been investigated as an approach for longer term inhibition of cytochrome P450 (P450) enzymes in mice. 2. In rats, ABT inhibits gastric emptying, to investigate this potential limitation in mice we examined the effect of ABT administration on the oral absorption of NVS-CRF38. Two hour prior oral treatment with 100 mg/kg ABT inhibited the oral absorption of NVS-CRF38, Tmax was 4 hours for ABT-treated mice compared to 0.5 hours in the control group. 3. A marked inhibition of hepatic P450 activity was observed in mice fed with ABT containing food pellets for 1 month. P450 activity, as measured by the oral clearance of antipyrine, was inhibited on day 3 (88% of control), week 2 (83% of control) and week 4 (80% of control). 4. Tmax values for antipyrine were comparable between ABT-treated mice and the control group, alleviating concerns about impaired gastric function. 5. Inclusion of ABT in food provides a minimally invasive and convenient approach to achieve longer term inhibition of P450 activity in mice. This model has the potential to enable pharmacological proof-of-concept studies for research compounds which are extensively metabolised by P450 enzymes.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Triazoles/farmacología , Administración Oral , Animales , Ratones , Oxazoles/metabolismo , Pirazoles/metabolismo
3.
Pharm Res ; 32(6): 2154-67, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25534684

RESUMEN

PURPOSE: A poorly water soluble acidic active pharmaceutical ingredient (API) was transformed into an ionic liquid (IL) aiming at faster and higher oral availability in comparison to a prodrug. METHODS: API preparations were characterized in solid state by single crystal and powder diffraction, NMR, DSC, IR and in solution by NMR and ESI-MS. Dissolution and precipitation kinetics were detailed as was the role of the counterion on API supersaturation. Transepithelial API transport through Caco-2 monolayers and counterion cytotoxicity were assessed. RESULTS: The mechanism leading to a 700 fold faster dissolution rate and longer duration of API supersaturation of the ionic liquid in comparison to the free acid was deciphered. Transepithelial transport was about three times higher for the IL in comparison to the prodrug when substances were applied as suspensions with the higher solubility of the IL outpacing the higher permeability of the prodrug. The counterion was nontoxic with IC50 values in the upper µM / lower mM range in cell lines of hepatic and renal origin as well as in macrophages. CONCLUSION: The IL approach was instrumental for tuning physico-chemical API properties, while avoiding the inherent need for structural changes as required for prodrugs.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/química , Líquidos Iónicos/química , Profármacos/química , Tecnología Farmacéutica/métodos , Administración Oral , Disponibilidad Biológica , Células CACO-2 , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/farmacocinética , Antagonistas de Aminoácidos Excitadores/toxicidad , Humanos , Absorción Intestinal , Líquidos Iónicos/administración & dosificación , Líquidos Iónicos/farmacocinética , Líquidos Iónicos/toxicidad , Espectroscopía de Resonancia Magnética , Permeabilidad , Difracción de Polvo , Profármacos/administración & dosificación , Profármacos/farmacocinética , Profármacos/toxicidad , Receptores AMPA/antagonistas & inhibidores , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja , Relación Estructura-Actividad
4.
J Med Chem ; 65(12): 8345-8379, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35500094

RESUMEN

Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.


Asunto(s)
Antineoplásicos , Fosfatidilinositol 3-Quinasas , Aminopiridinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Compuestos Orgánicos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Cancer Discov ; 12(6): 1500-1517, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404998

RESUMEN

Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE: JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Inhibidores Enzimáticos , Indazoles , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Indazoles/química , Indazoles/farmacología , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
6.
J Med Chem ; 61(3): 865-880, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29359565

RESUMEN

Signal peptide peptidase-like 2a (SPPL2a) is an aspartic intramembrane protease which has recently been shown to play an important role in the development and function of antigen presenting cells such as B lymphocytes and dendritic cells. In this paper, we describe the discovery of the first selective and orally active SPPL2a inhibitor (S)-2-cyclopropyl-N1-((S)-5,11-dioxo-10,11-dihydro-1H,3H,5H-spiro[benzo[d]pyrazolo[1,2-a][1,2]diazepine-2,1'-cyclopropan]-10-yl)-N4-(5-fluoro-2-methylpyridin-3-yl)succinamide 40 (SPL-707). This compound shows adequate selectivity against the closely related enzymes γ-secretase and SPP and a good pharmacokinetic profile in mouse and rat. Compound 40 significantly inhibited processing of the SPPL2a substrate CD74/p8 fragment in rodents at doses ≤10 mg/kg b.i.d. po. Oral dosing of 40 for 11 days at ≥10 mg/kg b.i.d. recapitulated the phenotype seen in Sppl2a knockout (ko) and ENU mutant mice (reduced number of specific B cells and myeloid dendritic cells). Thus, we believe that SPPL2a represents an interesting and druggable pharmacological target, potentially providing a novel approach for the treatment of autoimmune diseases by targeting B cells and dendritic cells.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Factores Inmunológicos/farmacología , Factores Inmunológicos/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Células HEK293 , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Concentración 50 Inhibidora , Ratones , Pirazoles/administración & dosificación , Pirazoles/química , Pirazoles/farmacocinética , Pirazoles/farmacología , Ratas
7.
J Control Release ; 268: 314-322, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29097303

RESUMEN

Poor water solubility of drugs fuels complex formulations and jeopardizes patient access to medication. Simplifying these complexities we systematically synthesized a library of 36 sterically demanding counterions and mapped the pharmaceutical design space for amorphous ionic liquid strategies for Selurampanel, a poorly water soluble drug used against migraine. Patients would benefit from a rapid uptake after oral administration to alleviate migraine symptoms. Therefore, we probed the ionic liquids for the flux, supersaturation period and hygroscopicity leading to algorithms linking molecular counterion descriptors to predicted pharmaceutical outcome. By that, 30- or 800-fold improvements of the supersaturation period and fluxes were achieved as were immediate to sustained release profiles through structural counterions' optimization compared to the crystalline free acid of Selurampanel. Guided by ionic liquid structure, in vivo profiles ranged from rapid bioavailability and high maximal plasma concentrations to sustained patterns. In conclusion, the study outlined and predicted the accessible pharmaceutical design space of amorphous ionic liquid based and excipient-free formulations pointing to the enormous pharmaceutical potential of ionic liquid designs.


Asunto(s)
Líquidos Iónicos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Diseño de Fármacos , Liberación de Fármacos , Femenino , Humanos , Líquidos Iónicos/administración & dosificación , Líquidos Iónicos/química , Líquidos Iónicos/farmacocinética , Ratones , Quinazolinonas/administración & dosificación , Quinazolinonas/química , Quinazolinonas/farmacocinética , Ratas Wistar
8.
Eur J Pharm Biopharm ; 94: 73-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25976317

RESUMEN

Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs.


Asunto(s)
Compuestos Organofosforados/química , Preparaciones Farmacéuticas/química , Agua/química , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Líquidos Iónicos , Cinética , Espectroscopía de Resonancia Magnética , Difracción de Polvo , Solubilidad , Solventes , Espectrofotometría Infrarroja , Tecnología Farmacéutica/métodos , Temperatura de Transición , Humectabilidad
9.
ChemMedChem ; 5(6): 911-20, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20432490

RESUMEN

The tubulin-binding mode of C3- and C15-modified analogues of epothilone A (Epo A) was determined by NMR spectroscopy and computational methods and compared with the existing structural models of tubulin-bound natural Epo A. Only minor differences were observed in the conformation of the macrocycle between Epo A and the C3-modified analogues investigated. In particular, 3-deoxy- (compound 2) and 3-deoxy-2,3-didehydro-Epo A (3) were found to adopt similar conformations in the tubulin-binding cleft as Epo A, thus indicating that the 3-OH group is not essential for epothilones to assume their bioactive conformation. None of the available models of the tubulin-epothilone complex is able to fully recapitulate the differences in tubulin-polymerizing activity and microtubule-binding affinity between C20-modified epothilones 6 (C20-propyl), 7 (C20-butyl), and 8 (C20-hydroxypropyl). Based on the results of transferred NOE experiments in the presence of tubulin, the isomeric C15 quinoline-based Epo B analogues 4 and 5 show very similar orientations of the side chain, irrespective of the position of the nitrogen atom in the quinoline ring. The quinoline side chain stacks on the imidazole moiety of beta-His227 with equal efficiency in both cases, thus suggesting that the aromatic side chain moiety in epothilones contributes to tubulin binding through strong van der Waals interactions with the protein rather than hydrogen bonding involving the heteroaromatic nitrogen atom. These conclusions are in line with existing tubulin polymerization and microtubule-binding data for 4, 5, and Epo B.


Asunto(s)
Epotilonas/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Animales , Sitios de Unión , Bovinos , Línea Celular Tumoral , Simulación por Computador , Epotilonas/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA