Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 290(45): 26954-26967, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26378228

RESUMEN

ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Trypanosoma brucei brucei/genética , Animales , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Transcripción Genética , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
Nucleic Acids Res ; 42(14): 9249-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063294

RESUMEN

Binding and hydrolysis of ATP is universally required by AAA+ proteins to underpin their mechano-chemical work. Here we explore the roles of the ATPase site in an AAA+ transcriptional activator protein, the phage shock protein F (PspF), by specifically altering the Walker B motif sequence required in catalyzing ATP hydrolysis. One such mutant, the E108Q variant, is defective in ATP hydrolysis but fully remodels target transcription complexes, the RNAP-σ(54) holoenzyme, in an ATP dependent manner. Structural analysis of the E108Q variant reveals that unlike wild-type protein, which has distinct conformations for E108 residue in the ATP and ADP bound forms, E108Q adapts the same conformation irrespective of nucleotide bound. Our data show that the remodeling activities of E108Q are strongly favored on pre-melted DNA and engagement with RNAP-σ(54) using ATP binding can be sufficient to convert the inactive holoenzyme to an active form, while hydrolysis per se is required for nucleic acid remodeling that leads to transcription bubble formation. Furthermore, using linked dimer constructs, we show that RNAP-σ(54) engagement by adjacent subunits within a hexamer are required for this protein remodeling activity while DNA remodeling activity can tolerate defective ATP hydrolysis of alternating subunits.


Asunto(s)
Proteínas de Escherichia coli/química , Transactivadores/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Modelos Moleculares , Mutación , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética
3.
Nucleic Acids Res ; 41(11): 5874-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609536

RESUMEN

The formation of the open promoter complex (RPo) in which the melted DNA containing the transcription start site is located at the RNA polymerase (RNAP) catalytic centre is an obligatory step in the transcription of DNA into RNA catalyzed by RNAP. In the RPo, an extensive network of interactions is established between DNA, RNAP and the σ-factor and the formation of functional RPo occurs via a series of transcriptional intermediates (collectively 'RPi'). A single tryptophan is ideally positioned to directly engage with the flipped out base of the non-template strand at the +1 site. Evidence suggests that this tryptophan (i) is involved in either forward translocation or DNA scrunching and (ii) in σ(54)-regulated promoters limits the transcription activity of at least one intermediate complex (RPi) before the formation of a fully functional RPo. Limiting RPi activity may be important in preventing the premature synthesis of abortive transcripts, suggesting its involvement in a general mechanism driving the RPi to RPo transition for transcription initiation.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Iniciación de la Transcripción Genética , Triptófano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Archaea/enzimología , Bacterias/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , ADN/química , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Elementos de Facilitación Genéticos , Eucariontes/enzimología , Holoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción
4.
Nucleic Acids Res ; 40(21): 10878-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965125

RESUMEN

Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Elementos de Facilitación Genéticos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Iniciación de la Transcripción Genética , Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Eliminación de Gen , Holoenzimas/metabolismo , Hidrólisis , Lactonas/farmacología , Regiones Promotoras Genéticas , Conformación Proteica , ARN Polimerasa Sigma 54/genética , Proteínas Represoras/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética/efectos de los fármacos
5.
Nucleic Acids Res ; 39(2): 464-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20851833

RESUMEN

RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quantitated using promoter-independent dinucleotide extension assays. The results revealed two distinct clusters (mjTFIIB E78-R80 and mjTFIIB R90-G94, respectively) that were particularly sensitive to substitutions. In contrast, a short sequence (mjTFIIB A81-K89) between these two clusters tolerated radical single amino acid substitutions; short deletions in that region even caused a marked increase in the ability of TFIIB to stimulate abortive transcription ('superstimulation'). The superstimulating activity did, however, not correlate with increased recruitment of the TFIIB/RNAP complex because substitutions in a particular residue (mjTFIIB K87) increased recruitment by more than 5-fold without affecting the rate of abortive transcript stimulation. Our work demonstrates that highly localized changes within the TFIIB linker have profound, yet surprisingly disconnected, effects on RNAP recruitment, TFIIB/RNAP complex stability and the rate of transcription initiation. The identification of superstimulating TFIIB variants reveals the existence of a previously unknown rate-limiting step acting on the earliest stages of gene expression.


Asunto(s)
Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Activación Transcripcional , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Methanococcales/genética , Mutación , Fenotipo , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Eliminación de Secuencia , Factor de Transcripción TFIIB/genética
6.
J Biol Chem ; 286(16): 14469-79, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21357417

RESUMEN

Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Prueba de Complementación Genética , Lisina/química , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/genética
8.
Biochem Soc Symp ; (73): 49-58, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16626286

RESUMEN

The archaeal basal transcriptional machinery consists of TBP (TATA-binding protein), TFB (transcription factor B; a homologue of eukaryotic TFIIB) and an RNA polymerase that is structurally very similar to eukaryotic RNA polymerase II. This constellation of factors is sufficient to assemble specifically on a TATA box-containing promoter and to initiate transcription at a specific start site. We have used this system to study the functional interaction between basal transcription factors and RNA polymerase, with special emphasis on the post-recruitment function of TFB. A bioinformatics analysis of the B-finger of archaeal TFB and eukaryotic TFIIB reveals that this structure undergoes rapid and apparently systematic evolution in archaeal and eukaryotic evolutionary domains. We provide a detailed analysis of these changes and discuss their possible functional implications.


Asunto(s)
Proteínas Arqueales/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factor de Transcripción TFIIB/metabolismo , Secuencia de Aminoácidos , Animales , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Secuencia de Bases , ADN/genética , ADN/metabolismo , ADN de Archaea/genética , ADN de Archaea/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Células Eucariotas , Evolución Molecular , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/genética
9.
Methods Mol Biol ; 1286: 97-106, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25749949

RESUMEN

Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.


Asunto(s)
Cromatografía de Afinidad/instrumentación , Proteínas Recombinantes/aislamiento & purificación , Robótica , Bacterias/citología , Bacterias/genética , Proliferación Celular , Microesferas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Methods Mol Biol ; 977: 217-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23436365

RESUMEN

TFIIB-like general transcription factors are required for transcription initiation by all eukaryotic and archaeal RNA polymerases (RNAPs). TFIIB facilitates both recruitment and post-recruitment steps of initiation; in particular, TFIIB stimulates abortive initiation. X-ray crystallography of TFIIB-RNAP II complexes shows that the TFIIB linker region penetrates the RNAP active center, yet the impact of this arrangement on RNAP activity and underlying mechanisms remains elusive. Promoter-independent abortive initiation assays exploit the intrinsic ability of RNAP enzymes to initiate transcription from nicked DNA templates and record the formation of the first phosphodiester bonds. These assays can be used to measure the effect of transcription factors such as TFIIB and RNAP mutations on abortive transcription.


Asunto(s)
Proteínas Arqueales/química , ARN Polimerasas Dirigidas por ADN/química , Regiones Promotoras Genéticas , Factor de Transcripción TFIIB/química , Transcripción Genética , Proteínas Virales/química , Proteínas de Escherichia coli/química , Genes Reporteros , Luciferasas/biosíntesis , Luciferasas/genética , Methanococcales/enzimología , Methanococcales/genética , Unión Proteica , Volumetría , Iniciación de la Transcripción Genética
11.
J Vis Exp ; (66): e4110, 2012 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-22952005

RESUMEN

X-ray crystallography is the method of choice for obtaining a detailed view of the structure of proteins. Such studies need to be complemented by further biochemical analyses to obtain detailed insights into structure/function relationships. Advances in oligonucleotide- and gene synthesis technology make large-scale mutagenesis strategies increasingly feasible, including the substitution of target residues by all 19 other amino acids. Gain- or loss-of-function phenotypes then allow systematic conclusions to be drawn, such as the contribution of particular residues to catalytic activity, protein stability and/or protein-protein interaction specificity. In order to attribute the different phenotypes to the nature of the mutation--rather than to fluctuating experimental conditions--it is vital to purify and analyse the proteins in a controlled and reproducible manner. High-throughput strategies and the automation of manual protocols on robotic liquid-handling platforms have created opportunities to perform such complex molecular biological procedures with little human intervention and minimal error rates. Here, we present a general method for the purification of His-tagged recombinant proteins in a high-throughput manner. In a recent study, we applied this method to a detailed structure-function investigation of TFIIB, a component of the basal transcription machinery. TFIIB is indispensable for promoter-directed transcription in vitro and is essential for the recruitment of RNA polymerase into a preinitiation complex. TFIIB contains a flexible linker domain that penetrates the active site cleft of RNA polymerase. This linker domain confers two biochemically quantifiable activities on TFIIB, namely (i) the stimulation of the catalytic activity during the 'abortive' stage of transcript initiation, and (ii) an additional contribution to the specific recruitment of RNA polymerase into the preinitiation complex. We exploited the high-throughput purification method to generate single, double and triple substitution and deletions mutations within the TFIIB linker and to subsequently analyse them in functional assays for their stimulation effect on the catalytic activity of RNA polymerase. Altogether, we generated, purified and analysed 381 mutants--a task which would have been time-consuming and laborious to perform manually. We produced and assayed the proteins in multiplicates which allowed us to appreciate any experimental variations and gave us a clear idea of the reproducibility of our results. This method serves as a generic protocol for the purification of His-tagged proteins and has been successfully used to purify other recombinant proteins. It is currently optimised for the purification of 24 proteins but can be adapted to purify up to 96 proteins.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Recombinantes/aislamiento & purificación , Secuencia de Aminoácidos , Histidina/química , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/aislamiento & purificación
12.
Transcription ; 2(6): 254-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22223047

RESUMEN

The TFIIB linker domain stimulates the catalytic activity of archaeal RNAP. By characterising a range of super-stimulating mutants we identified a novel rate-limiting step in transcription initiation. Our results help to interpret structural findings and pave the way towards higher-resolution structures of the RNAP-TFIIB linker interface.


Asunto(s)
Proteínas Arqueales/química , Estructura Terciaria de Proteína , Factor de Transcripción TFIIB/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Transcripción Genética
13.
J Biol ; 7(10): 40, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19055851

RESUMEN

BACKGROUND: Cellular RNA polymerases are highly conserved enzymes that undergo complex conformational changes to coordinate the processing of nucleic acid substrates through the active site. Two domains in particular, the bridge helix and the trigger loop, play a key role in this mechanism by adopting different conformations at various stages of the nucleotide addition cycle. The functional relevance of these structural changes has been difficult to assess from the relatively small number of static crystal structures currently available. RESULTS: Using a novel robotic approach we characterized the functional properties of 367 site-directed mutants of the Methanocaldococcus jannaschii RNA polymerase A' subunit, revealing a wide spectrum of in vitro phenotypes. We show that a surprisingly large number of single amino acid substitutions in the bridge helix, including a kink-inducing proline substitution, increase the specific activity of RNA polymerase. Other 'superactivating' substitutions are located in the adjacent base helices of the trigger loop. CONCLUSION: The results support the hypothesis that the nucleotide addition cycle involves a kinked bridge helix conformation. The active center of RNA polymerase seems to be constrained by a network of functional interactions between the bridge helix and trigger loop that controls fundamental parameters of RNA synthesis.


Asunto(s)
Archaea/enzimología , Archaea/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Archaea/metabolismo , Secuencia de Aminoácidos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN de Archaea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA