Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8020): 289-293, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831053

RESUMEN

Ensembles of particles governed by quantum mechanical laws exhibit intriguing emergent behaviour. Atomic quantum gases1,2, liquid helium3,4 and electrons in quantum materials5-7 all exhibit distinct properties because of their composition and interactions. Quantum degenerate samples of ultracold dipolar molecules promise the realization of new phases of matter and new avenues for quantum simulation8 and quantum computation9. However, rapid losses10, even when reduced through collisional shielding techniques11-13, have so far prevented evaporative cooling to a Bose-Einstein condensate (BEC). Here we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium-caesium molecules to quantum degeneracy and cross the phase transition to a BEC. The BEC reveals itself by a bimodal distribution when the phase-space density exceeds 1. BECs with a condensate fraction of 60(10)% and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 s. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets14, self-organized crystal phases15 and dipolar spin liquids in optical lattices16.


Asunto(s)
Teoría Cuántica , Temperatura , Sodio/química , Transición de Fase
2.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33713597

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Asunto(s)
COVID-19 , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral , SARS-CoV-2 , Animales , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
3.
RNA ; 30(2): 113-123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071473

RESUMEN

The structure of an RNA, and even more so its interactions with other RNAs, provide valuable information about its function. Secondary structure-based tools for RNA-RNA interaction predictions provide a quick way to identify possible interaction targets and structures. However, these tools ignore the effect of steric hindrance on the tertiary (3D) structure level, and do not consider whether a suitable folding pathway exists to form the interaction. As a consequence, these tools often predict interactions that are unrealistically long and could be formed (in three dimensions) only by going through highly entangled intermediates. Here, we present a computational pipeline to assess whether a proposed secondary (2D) structure interaction is sterically feasible and reachable along a plausible folding pathway. To this end, we simulate the folding of a series of 3D structures along a given 2D folding path. To avoid the complexity of large-scale atomic resolution simulations, our pipeline uses coarse-grained 3D modeling and breaks up the folding path into small steps, each corresponding to the extension of the interaction by 1 or 2 bp. We apply our pipeline to analyze RNA-RNA interaction formation for three selected RNA-RNA complexes. We find that kissing hairpins, in contrast to interactions in the exterior loop, are difficult to extend and tend to get stuck at an interaction length of 6 bp. Our tool, including source code, documentation, and sample data, is available at www.github.com/irenekb/RRI-3D.


Asunto(s)
Pliegue del ARN , ARN , ARN/química , Conformación de Ácido Nucleico , Estudios de Factibilidad , Programas Informáticos
4.
Nature ; 614(7946): 35-36, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725989
5.
Phys Rev Lett ; 130(11): 113002, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001095

RESUMEN

We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22 000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10^{12} cm^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. We measure the ground state ac polarizability at 1064 nm along with the two-body loss rate, which we find to be universal. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D at a dc electric field of 2.1(2) kV/cm and demonstrate strong microwave coupling between the two lowest rotational states with a Rabi frequency of 2π×45 MHz. A large electric dipole moment, accessible at relatively small electric fields, makes ultracold gases of NaCs molecules well suited for the exploration of strongly interacting phases of dipolar quantum matter.

6.
J Phys Chem A ; 127(39): 8194-8199, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37738380

RESUMEN

We report on a cycling scheme for Doppler cooling of trapped OH+ ions using transitions between the electronic ground state X3Σ- and the first excited triplet state A3Π. We have identified relevant transitions for photon cycling and repumping, have found that coupling into other electronic states is strongly suppressed, and have calculated the number of photon scatterings required to cool OH+ to a temperature where Raman sideband cooling can take over. In contrast to the standard approach, where molecular ions are sympathetically cooled, our scheme does not require co-trapping of another species and opens the door to the creation of pure samples of cold molecular ions with potential applications in quantum information, quantum chemistry, and astrochemistry. The laser cooling scheme identified for OH+ is efficient despite the absence of near-diagonal Franck-Condon factors, suggesting that broader classes of molecules and molecular ions are amenable to laser cooling than commonly assumed.

7.
Bioinformatics ; 36(Suppl_1): i242-i250, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657398

RESUMEN

MOTIVATION: Elucidating the functions of non-coding RNAs by homology has been strongly limited due to fundamental computational and modeling issues. While existing simultaneous alignment and folding (SA&F) algorithms successfully align homologous RNAs with precisely known boundaries (global SA&F), the more pressing problem of identifying new classes of homologous RNAs in the genome (local SA&F) is intrinsically more difficult and much less understood. Typically, the length of local alignments is strongly overestimated and alignment boundaries are dramatically mispredicted. We hypothesize that local SA&F approaches are compromised this way due to a score bias, which is caused by the contribution of RNA structure similarity to their overall alignment score. RESULTS: In the light of this hypothesis, we study pairwise local SA&F for the first time systematically-based on a novel local RNA alignment benchmark set and quality measure. First, we vary the relative influence of structure similarity compared to sequence similarity. Putting more emphasis on the structure component leads to overestimating the length of local alignments. This clearly shows the bias of current scores and strongly hints at the structure component as its origin. Second, we study the interplay of several important scoring parameters by learning parameters for local and global SA&F. The divergence of these optimized parameter sets underlines the fundamental obstacles for local SA&F. Third, by introducing a position-wise correction term in local SA&F, we constructively solve its principal issues. AVAILABILITY AND IMPLEMENTATION: The benchmark data, detailed results and scripts are available at https://github.com/BackofenLab/local_alignment. The RNA alignment tool LocARNA, including the modifications proposed in this work, is available at https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , ARN , Genoma , ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Programas Informáticos
8.
Phys Rev Lett ; 125(6): 063401, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845680

RESUMEN

We demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channel calculations that agree well with the experimentally observed collision rates. The resonant microwave-induced collisions found here enable controlled, strong interactions between molecules, of immediate use for experiments in optical lattices.

9.
Nucleic Acids Res ; 46(W1): W25-W29, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29788132

RESUMEN

The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.


Asunto(s)
Secuencia de Bases/genética , Internet , ARN/genética , Programas Informáticos , Algoritmos , Conformación de Ácido Nucleico , ARN/química , Alineación de Secuencia/instrumentación , Análisis de Secuencia de ARN/instrumentación , Relación Estructura-Actividad
10.
BMC Bioinformatics ; 20(1): 209, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023239

RESUMEN

BACKGROUND: The design of multi-stable RNA molecules has important applications in biology, medicine, and biotechnology. Synthetic design approaches profit strongly from effective in-silico methods, which substantially reduce the need for costly wet-lab experiments. RESULTS: We devise a novel approach to a central ingredient of most in-silico design methods: the generation of sequences that fold well into multiple target structures. Based on constraint networks, our approach supports generic Boltzmann-weighted sampling, which enables the positive design of RNA sequences with specific free energies (for each of multiple, possibly pseudoknotted, target structures) and GC-content. Moreover, we study general properties of our approach empirically and generate biologically relevant multi-target Boltzmann-weighted designs for an established design benchmark. Our results demonstrate the efficacy and feasibility of the method in practice as well as the benefits of Boltzmann sampling over the previously best multi-target sampling strategy-even for the case of negative design of multi-stable RNAs. Besides empirically studies, we finally justify the algorithmic details due to a fundamental theoretic result about multi-stable RNA design, namely the #P-hardness of the counting of designs. CONCLUSION: introduces a novel, flexible, and effective approach to multi-target RNA design, which promises broad applicability and extensibility. Our free software is available at: https://github.com/yannponty/RNARedPrint Supplementary data are available online.


Asunto(s)
ARN/química , Interfaz Usuario-Computador , Algoritmos , Composición de Base , Modelos Teóricos , Conformación de Ácido Nucleico
11.
Bioinformatics ; 34(22): 3849-3856, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29868872

RESUMEN

Motivation: The computational prediction of RNA secondary structure by free energy minimization has become an important tool in RNA research. However in practice, energy minimization is mostly limited to pseudoknot-free structures or rather simple pseudoknots, not covering many biologically important structures such as kissing hairpins. Algorithms capable of predicting sufficiently complex pseudoknots (for sequences of length n) used to have extreme complexities, e.g. Pknots has O(n6) time and O(n4) space complexity. The algorithm CCJ dramatically improves the asymptotic run time for predicting complex pseudoknots (handling almost all relevant pseudoknots, while being slightly less general than Pknots), but this came at the cost of large constant factors in space and time, which strongly limited its practical application (∼200 bases already require 256 GB space). Results: We present a CCJ-type algorithm, Knotty, that handles the same comprehensive pseudoknot class of structures as CCJ with improved space complexity of Θ(n3+Z)-due to the applied technique of sparsification, the number of 'candidates', Z, appears to grow significantly slower than n4 on our benchmark set (which include pseudoknotted RNAs up to 400 nt). In terms of run time over this benchmark, Knotty clearly outperforms Pknots and the original CCJ implementation, CCJ 1.0; Knotty's space consumption fundamentally improves over CCJ 1.0, being on a par with the space-economic Pknots. By comparing to CCJ 2.0, our unsparsified Knotty variant, we demonstrate the isolated effect of sparsification. Moreover, Knotty employs the state-of-the-art energy model of 'HotKnots DP09', which results in superior prediction accuracy over Pknots. Availability and implementation: Our software is available at https://github.com/HosnaJabbari/Knotty. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
ARN/química , Programas Informáticos , Algoritmos , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN
12.
Nucleic Acids Res ; 45(7): 4108-4119, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27994029

RESUMEN

Riboswitches have gained attention as tools for synthetic biology, since they enable researchers to reprogram cells to sense and respond to exogenous molecules. In vitro evolutionary approaches produced numerous RNA aptamers that bind such small ligands, but their conversion into functional riboswitches remains difficult. We previously developed a computational approach for the design of synthetic theophylline riboswitches based on secondary structure prediction. These riboswitches have been constructed to regulate ligand-dependent transcription termination in Escherichia coli. Here, we test the usability of this design strategy by applying the approach to tetracycline and streptomycin aptamers. The resulting tetracycline riboswitches exhibit robust regulatory properties in vivo. Tandem fusions of these riboswitches with theophylline riboswitches represent logic gates responding to two different input signals. In contrast, the conversion of the streptomycin aptamer into functional riboswitches appears to be difficult. Investigations of the underlying aptamer secondary structure revealed differences between in silico prediction and structure probing. We conclude that only aptamers adopting the minimal free energy (MFE) structure are suitable targets for construction of synthetic riboswitches with design approaches based on equilibrium thermodynamics of RNA structures. Further improvements in the design strategy are required to implement aptamer structures not corresponding to the calculated MFE state.


Asunto(s)
Regulación de la Expresión Génica , Riboswitch , Terminación de la Transcripción Genética , Aptámeros de Nucleótidos/química , Biología Computacional/métodos , Simulación por Computador , Escherichia coli/genética , Genes Reporteros , Conformación de Ácido Nucleico , Riboswitch/efectos de los fármacos , Estreptomicina/farmacología , Tetraciclina/farmacología
13.
Nucleic Acids Res ; 45(W1): W560-W566, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28582575

RESUMEN

RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. AVAILABILITY: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/química , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional , Internet , Conformación de Ácido Nucleico , ARN/metabolismo , ARN no Traducido/química , Flujo de Trabajo
14.
Proc Natl Acad Sci U S A ; 113(26): 7237-42, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298343

RESUMEN

RNA structures are fundamentally important for RNA function. Dynamic, condition-dependent structural changes are able to modulate gene expression as shown for riboswitches and RNA thermometers. By parallel analysis of RNA structures, we mapped the RNA structurome of Yersinia pseudotuberculosis at three different temperatures. This human pathogen is exquisitely responsive to host body temperature (37 °C), which induces a major metabolic transition. Our analysis profiles the structure of more than 1,750 RNAs at 25 °C, 37 °C, and 42 °C. Average mRNAs tend to be unstructured around the ribosome binding site. We searched for 5'-UTRs that are folded at low temperature and identified novel thermoresponsive RNA structures from diverse gene categories. The regulatory potential of 16 candidates was validated. In summary, we present a dynamic bacterial RNA structurome and find that the expression of virulence-relevant functions in Y. pseudotuberculosis and reprogramming of its metabolism in response to temperature is associated with a restructuring of numerous mRNAs.


Asunto(s)
ARN Bacteriano/genética , Temperatura , Yersinia pseudotuberculosis/genética , Escherichia coli/genética , Conformación de Ácido Nucleico , Transcriptoma , Yersinia pseudotuberculosis/crecimiento & desarrollo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
15.
BMC Bioinformatics ; 18(Suppl 12): 424, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29072147

RESUMEN

BACKGROUND: The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation implemented by a wide variety of riboswitches. The associated refolding processes often cannot be explained by thermodynamic effects alone. Instead, they are governed by the kinetics of RNA folding. While the computational analysis of RNA folding can make use of well-established models of the thermodynamics of RNA structures formation, RNA-RNA interaction, and RNA-ligand interaction, kinetic effects pose fundamentally more challenging problems due to the enormous size of the conformation space. The analysis of the combined process of ligand binding and structure formation even for small RNAs is plagued by intractably large state spaces. Moreover, the interaction is concentration-dependent and thus is intrinsically non-linear. This precludes the direct transfer of the strategies previously used for the analysis of RNA folding kinetics. RESULTS: In our novel, computationally tractable approach to RNA-ligand kinetics, we overcome the two main difficulties by applying a gradient-based coarse graining to RNA-ligand systems and solving the process in a pseudo-first order approximation. The latter is well-justified for the most common case of ligand excess in RNA-ligand systems. We present the approach rigorously and discuss the parametrization of the model based on empirical data. The method supports the kinetic study of RNA-ligand systems, in particular at different ligand concentrations. As an example, we apply our approach to analyze the concentration dependence of the ligand response of the rationally designed, artificial theophylline riboswitch RS3. CONCLUSION: This work demonstrates the tractability of the computational analysis of RNA-ligand interaction. Naturally, the model will profit as more accurate measurements of folding and binding parameters become available. Due to this work, computational analysis is available to support tasks like the design of riboswitches; our analysis of RS3 suggests strong co-transcriptional effects for this riboswitch. The method used in this study is available online, cf. Section "Availability of data and materials".


Asunto(s)
ARN/metabolismo , Dimerización , Cinética , Ligandos , Modelos Teóricos , Conformación de Ácido Nucleico , Probabilidad , ARN/química , Termodinámica
16.
Sensors (Basel) ; 17(9)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867802

RESUMEN

RNA aptamers readily recognize small organic molecules, polypeptides, as well as other nucleic acids in a highly specific manner. Many such aptamers have evolved as parts of regulatory systems in nature. Experimental selection techniques such as SELEX have been very successful in finding artificial aptamers for a wide variety of natural and synthetic ligands. Changes in structure and/or stability of aptamers upon ligand binding can propagate through larger RNA constructs and cause specific structural changes at distal positions. In turn, these may affect transcription, translation, splicing, or binding events. The RNA secondary structure model realistically describes both thermodynamic and kinetic aspects of RNA structure formation and refolding at a single, consistent level of modelling. Thus, this framework allows studying the function of natural riboswitches in silico. Moreover, it enables rationally designing artificial switches, combining essentially arbitrary sensors with a broad choice of read-out systems. Eventually, this approach sets the stage for constructing versatile biosensors.


Asunto(s)
Riboswitch , Aptámeros de Nucleótidos , Técnicas Biosensibles , Cinética , Ligandos
17.
Genome Res ; 23(6): 1018-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23296921

RESUMEN

Recent genome-wide computational screens that search for conservation of RNA secondary structure in whole-genome alignments (WGAs) have predicted thousands of structural noncoding RNAs (ncRNAs). The sensitivity of such approaches, however, is limited, due to their reliance on sequence-based whole-genome aligners, which regularly misalign structural ncRNAs. This suggests that many more structural ncRNAs may remain undetected. Structure-based alignment, which could increase the sensitivity, has been prohibitive for genome-wide screens due to its extreme computational costs. Breaking this barrier, we present the pipeline REAPR (RE-Alignment for Prediction of structural ncRNA), which efficiently realigns whole genomes based on RNA sequence and structure, thus allowing us to boost the performance of de novo ncRNA predictors, such as RNAz. Key to the pipeline's efficiency is the development of a novel banding technique for multiple RNA alignment. REAPR significantly outperforms the widely used predictors RNAz and EvoFold in genome-wide screens; in direct comparison to the most recent RNAz screen on D. melanogaster, REAPR predicts twice as many high-confidence ncRNA candidates. Moreover, modENCODE RNA-seq experiments confirm a substantial number of its predictions as transcripts. REAPR's advancement of de novo structural characterization of ncRNAs complements the identification of transcripts from rapidly accumulating RNA-seq data.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/genética , Genoma de los Insectos , ARN no Traducido/química , ARN no Traducido/genética , Alineación de Secuencia/métodos , Algoritmos , Animales , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Sensibilidad y Especificidad
18.
Bioinformatics ; 31(15): 2489-96, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838465

RESUMEN

MOTIVATION: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). RESULTS: Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics.


Asunto(s)
Algoritmos , Pliegue del ARN , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Heurística
19.
Phys Rev Lett ; 116(22): 225306, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27314727

RESUMEN

We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable ^{23}Na^{40}K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J=1, we observe lifetimes of more than 3 s, comparable to those in the rovibrational ground state, J=0. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements, and quantum information processing.

20.
Nature ; 465(7295): 197-201, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20463733

RESUMEN

Interactions lie at the heart of correlated many-body quantum phases. Typically, the interactions between microscopic particles are described as two-body interactions. However, it has been shown that higher-order multi-body interactions could give rise to novel quantum phases with intriguing properties. So far, multi-body interactions have been observed as inelastic loss resonances in three- and four-body recombinations of atom-atom and atom-molecule collisions. Here we demonstrate the presence of effective multi-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice, emerging through virtual transitions of particles from the lowest energy band to higher energy bands. We observe such interactions up to the six-body case in time-resolved traces of quantum phase revivals, using an atom interferometric technique that allows us to precisely measure the absolute energies of atom number states at a lattice site. In addition, we show that the spectral content of these time traces can reveal the atom number statistics at a lattice site, similar to foundational experiments in cavity quantum electrodynamics that yield the statistics of a cavity photon field. Our precision measurement of multi-body interaction energies provides crucial input for the comparison of optical-lattice quantum simulators with many-body quantum theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA