RESUMEN
A nonrandomized 50-person case study of COVID-19-positive patients was conducted employing (for the first time) a regimen of whole-organ deep-tissue transdermal dynamic photobiomodulation (PBM) as a primary (or exclusive) therapeutic modality in the treatment of coronavirus. Therapy sessions comprised algorithmically alternating red (650 nm) and near-infrared (NIR; 850 nm) LEDs with an average irradiance of 11 mW/cm2 dynamically sequenced at multiple pulse frequencies. Delivered via 3D bendable polymeric pads maintaining orthogonal optical incidence to body contours over 1,000 cm2 , a single 84-minute session concurrently delivered 20 kJ to the sinuses and 15 kJ to each lung at skin temperatures below 42°C. Therapeutic outcomes observed include significant reductions in the duration and severity of disease symptoms. Acute conditions including fever, body aches (BA) and respiratory distress comprising paroxysmal coughing; lung congestion, dyspnea and hypoxia; sinus congestion; acute eye inflammation; and extreme malaise were eliminated in 41/50 patients within 4 days of commencing PBM treatments with 50/50 patients fully recovering within 3 weeks with no supplemental oxygen requirements. SpO2 concentrations improved as much as 9 points (average 2.5 points) across the entire study population. The PBM sessions required to completely resolve COVID-19 conditions appears monotonically correlated to the time-to-treatment (TTTx)-the delay between the onset of a patient's symptoms and commencing PBM therapy. In contrast, acute inflammatory symptoms were resolved within 4 days irrespective of TTTx.
Asunto(s)
COVID-19 , Terapia por Luz de Baja Intensidad , COVID-19/terapia , Humanos , Pulmón , SARS-CoV-2RESUMEN
Over the past two years, scientific research has moved at an unprecedented rate in response to the COVID-19 pandemic. The rapid development of effective vaccines and therapeutics would not have been possible without extensive background knowledge on coronaviruses developed over decades by researchers, including Kathryn (Kay) Holmes. Kay's research team discovered the first coronavirus receptors for mouse hepatitis virus and human coronavirus 229E and contributed a wealth of information on coronaviral spike glycoproteins and receptor interactions that are critical determinants of host and tissue specificity. She collaborated with several research laboratories to contribute knowledge in additional areas, including coronaviral pathogenesis, epidemiology, and evolution. Throughout her career, Kay was an extremely dedicated and thoughtful mentor to numerous graduate students and post-doctoral fellows. This article provides a review of her contributions to the coronavirus field and her exemplary mentoring.