Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(11): 4766-4776, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679472

RESUMEN

Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.


Asunto(s)
Alcoholismo , Humanos , Masculino , Femenino , Ratones , Animales , Alcoholismo/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Proteoma/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Corteza Prefrontal/metabolismo , Consumo de Bebidas Alcohólicas/genética , Etanol/metabolismo
2.
Mol Ther ; 31(10): 2975-2990, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37644723

RESUMEN

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Nanopartículas , Animales , Ratones , Distribución Tisular , Corteza Prefrontal , ARN , ARN Mensajero , ARN Interferente Pequeño
3.
Hum Genet ; 142(7): 927-947, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191732

RESUMEN

To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.


Asunto(s)
Oftalmopatías , Epitelio Pigmentado de la Retina , Animales , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Espectrometría de Masas en Tándem , Proteoma/genética , Proteoma/metabolismo , Proteómica , Retina/metabolismo , Perfilación de la Expresión Génica , Estudios de Asociación Genética
4.
Exp Eye Res ; 226: 109303, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343671

RESUMEN

PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-ß (TGF-ß) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-ß and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS: In this study, we investigated the effect of AA, TGF-ß1 and TGF-ß3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS: Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-ß1 and TGF-ß3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-ß induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS: Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.


Asunto(s)
Distrofia Endotelial de Fuchs , Factor de Crecimiento Transformador beta1 , Animales , Bovinos , Factor de Crecimiento Transformador beta1/metabolismo , Células Endoteliales/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Endotelio Corneal/metabolismo
5.
Blood ; 136(20): 2346-2358, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32640021

RESUMEN

Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.


Asunto(s)
Algoritmos , Activación Plaquetaria/fisiología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteómica/métodos , Animales , Humanos , Transducción de Señal/fisiología
6.
Circ Res ; 127(10): 1274-1287, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32844720

RESUMEN

RATIONALE: Prospective cohort studies question the value of HDL-C (high-density lipoprotein cholesterol) for stroke risk prediction. OBJECTIVE: Investigate the relationship between long-term functional recovery and HDL proteome and function. METHODS AND RESULTS: Changes in HDL protein composition and function (cholesterol efflux capacity) in patients after acute ischemic stroke at 2 time points (24 hours, 35 patients; 96 hours, 20 patients) and in 35 control subjects were measured. The recovery from stroke was assessed by 3 months, the National Institutes of Health Stroke Scale and modified Rankin scale scores. When compared with control subject after adjustments for sex and HDL-C levels, 12 proteins some of which participate in acute phase response and platelet activation (APMAP [adipocyte plasma membrane-associated protein], GPLD1 [phosphate inositol-glycan specific phospholipase D], APOE [apolipoprotein E], IHH [Indian hedgehog protein], ITIH4 [inter-alpha-trypsin inhibitor chain H4], SAA2 [serum amyloid A2], APOA4 [apolipoprotein A-IV], CLU [clusterin], ANTRX2 [anthrax toxin receptor 2], PON1 [serum paraoxonase/arylesterase], SERPINA1 [alpha-1-antitrypsin], and APOF [apolipoprotein F]) were significantly (adjusted P<0.05) altered in stroke HDL at 96 hours. The first 8 of these proteins were also significantly altered at 24 hours. Consistent with inflammatory remodeling, cholesterol efflux capacity was reduced by 32% (P<0.001) at both time points. Baseline stroke severity adjusted regression model showed that changes within 96-hour poststroke in APOF, APOL1, APMAP, APOC4 (apolipoprotein C4), APOM (apolipoprotein M), PCYOX1 (prenylcysteine oxidase 1), PON1, and APOE correlate with stroke recovery scores (R2=0.38-0.73, adjusted P<0.05). APOF (R2=0.73) and APOL1 (R2=0.60) continued to significantly correlate with recovery scores after accounting for tPA (tissue-type plasminogen activator) treatment. CONCLUSIONS: Changes in HDL proteins during early acute phase of stroke associate with recovery. Monitoring HDL proteins may provide clinical biomarkers that inform on stroke recuperation.


Asunto(s)
Lipoproteínas HDL/metabolismo , Recuperación de la Función , Accidente Cerebrovascular/sangre , Anciano , Animales , Apolipoproteínas/sangre , Arildialquilfosfatasa/sangre , Biomarcadores/sangre , Línea Celular , Colesterol/sangre , Colesterol/metabolismo , Femenino , Glicosilfosfatidilinositol Diacilglicerol-Liasa/sangre , Proteínas Hedgehog/sangre , Humanos , Lipoproteínas HDL/sangre , Masculino , Glicoproteínas de Membrana/sangre , Ratones , Persona de Mediana Edad , Proteínas Inhibidoras de Proteinasas Secretoras/sangre , Proteoma/metabolismo , Receptores de Péptidos/sangre , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
7.
Phytopathology ; 112(7): 1500-1512, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34941365

RESUMEN

Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Juglans , Xanthomonas , Arginina , Proteínas Bacterianas/genética , Juglans/microbiología , Nitrógeno , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Proteómica , Virulencia , Xanthomonas/genética
8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362058

RESUMEN

Cultivated soybean (Glycine max (L.)), the world's most important legume crop, has high-to-moderate salt sensitivity. Being the frontier for sensing and controlling solute transport, membrane proteins could be involved in cell signaling, osmoregulation, and stress-sensing mechanisms, but their roles in abiotic stresses are still largely unknown. By analyzing salt-induced membrane proteomic changes in the roots and leaves of salt-sensitive soybean cultivar (C08) seedlings germinated under NaCl, we detected 972 membrane proteins, with those present in both leaves and roots annotated as receptor kinases, calcium-sensing proteins, abscisic acid receptors, cation and anion channel proteins, proton pumps, amide and peptide transporters, and vesicle transport-related proteins etc. Endocytosis, linoleic acid metabolism, and fatty acid biosynthesis pathway-related proteins were enriched in roots whereas phagosome, spliceosome and soluble NSF attachment protein receptor (SNARE) interaction-related proteins were enriched in leaves. Using label-free quantitation, 129 differentially expressed membrane proteins were found in both tissues upon NaCl treatment. Additionally, the 140 NaCl-induced proteins identified in roots and 57 in leaves are vesicle-, mitochondrial-, and chloroplast-associated membrane proteins and those with functions related to ion transport, protein transport, ATP hydrolysis, protein folding, and receptor kinases, etc. Our proteomic results were verified against corresponding gene expression patterns from published C08 RNA-seq data, demonstrating the importance of solute transport and sensing in salt stress responses.


Asunto(s)
Glycine max , Proteómica , Glycine max/genética , Proteómica/métodos , Proteínas de la Membrana/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Hojas de la Planta/metabolismo , Plantones/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Physiol Genomics ; 53(11): 473-485, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34677084

RESUMEN

Hibernating mammals undergo a dramatic drop in temperature and blood flow during torpor, yet avoid stasis blood clotting through mechanisms that remain unspecified. The effects of hibernation on hemostasis are especially complex, as cold temperatures generally activate platelets, resulting in platelet clearance and cold storage lesions in the context of blood transfusion. With a hibernating body temperature of 4°C-8°C, 13-lined ground squirrels (Ictidomys tridecemlineatus) provide a model to study hemostasis as well as platelet cold storage lesion resistance during hibernation. Here, we quantified and systematically compared proteomes of platelets collected from ground squirrels at summer (active), fall (entrance), and winter (topor) to elucidate how molecular-level changes in platelets may support hemostatic adaptations in torpor. Platelets were isolated from a total of 11 squirrels in June, October, and January. Platelet lysates from each animal were digested with trypsin prior to 11-plex tandem mass tag (TMT) labeling, followed by LC-MS/MS analysis for relative protein quantification. We measured >700 proteins with significant variations in abundance in platelets over the course of entrance, torpor, and activity-including systems of proteins regulating translation, secretion, metabolism, complement, and coagulation cascades. We also noted species-specific differences in levels of hemostatic, secretory, and inflammatory regulators in ground squirrel platelets relative to human platelets. Altogether, we provide the first ever proteomic characterization of platelets from hibernating animals, where systematic changes in metabolic, hemostatic, and other proteins may account for physiological adaptations in torpor and also inform translational effort to improve cold storage of human platelets for transfusion.


Asunto(s)
Plaquetas/química , Hibernación/fisiología , Proteoma/química , Sciuridae/sangre , Estaciones del Año , Animales , Cromatografía Liquida/métodos , Femenino , Humanos , Masculino , Proteómica/métodos , Especificidad de la Especie , Espectrometría de Masas en Tándem/métodos , Temperatura
10.
Exp Eye Res ; 213: 108813, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742692

RESUMEN

BACKGROUND: Orbital compartments harbor a variety of tissues that can be independently targeted in a plethora of disorders resulting in sight-threatening risks. Orbital inflammatory disorders (OID) including Graves' ophthalmopathy, sarcoidosis, IgG4 disease, granulomatosis with polyangiitis, and nonspecific orbital inflammation constitute an important cause of pain, diplopia and vision loss. Physical examination, laboratory tests, imaging, and even biopsy are not always adequate to classify orbital inflammation which is frequently deemed "nonspecific". Tear sampling and testing provide a potential "window" to the orbital disease process through a non-invasive technique that allows longitudinal sampling as the disease evolves. Using PubMed/Medline, we identified potentially relevant articles on tear proteomics published in the English language between 1988 and 2021. Of 303 citations obtained, 225 contained empirical data on tear proteins, including 33 publications on inflammatory conditions, 15 in glaucoma, 15 in thyroid eye disease, 1 in sarcoidosis (75) and 2 in uveitis (77,78). Review articles were used to identify an additional 56 relevant articles through citation search. In this review, we provide a short introduction to the potential use of tears as a diagnostic fluid and tool to investigate the mechanism of ocular diseases. A general review of previous tear proteomics studies is also provided, with a focus on Graves' ophthalmopathy (GO), and a discussion of unmet needs in the diagnosis and treatment of orbital inflammatory disease (OID). The review concludes by pointing out current limitations of mass spectrometric analysis of tear proteins and summarizes future needs in the field.


Asunto(s)
Biomarcadores/metabolismo , Proteínas del Ojo/metabolismo , Oftalmopatía de Graves/diagnóstico , Seudotumor Orbitario/diagnóstico , Lágrimas/metabolismo , Bases de Datos Factuales , Oftalmopatía de Graves/metabolismo , Humanos , Técnicas de Diagnóstico Molecular , Seudotumor Orbitario/metabolismo , Proteómica/métodos
11.
EMBO Rep ; 20(7): e47546, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267709

RESUMEN

Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Nicho de Células Madre , Animales , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Femenino , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Proteína S6 Ribosómica/genética
12.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638715

RESUMEN

Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corismato Mutasa/metabolismo , Juglans/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas , Xanthomonas/enzimología , Xanthomonas/patogenicidad
13.
Hum Genet ; 139(2): 151-184, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797049

RESUMEN

While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.


Asunto(s)
Biomarcadores/metabolismo , Catarata/metabolismo , Simulación por Computador , Proteínas del Ojo/metabolismo , Cristalino/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Catarata/genética , Catarata/patología , Biología Computacional , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Humanos , Cristalino/embriología , Ratones , Ratones Endogámicos C57BL , Proteoma/análisis , Transcriptoma
14.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050347

RESUMEN

The interaction between the plant host, walnut (Juglans regia; Jr), and a deadly pathogen (Xanthomonas arboricola pv. juglandis 417; Xaj) can lead to walnut bacterial blight (WB), which depletes walnut productivity by degrading the nut quality. Here, we dissect this pathosystem using tandem mass tag quantitative proteomics. Walnut hull tissues inoculated with Xaj were compared to mock-inoculated tissues, and 3972 proteins were identified, of which 3296 are from Jr and 676 from Xaj. Proteins with differential abundance include oxidoreductases, proteases, and enzymes involved in energy metabolism and amino acid interconversion pathways. Defense responses and plant hormone biosynthesis were also increased. Xaj proteins detected in infected tissues demonstrate its ability to adapt to the host microenvironment, limiting iron availability, coping with copper toxicity, and maintaining energy and intermediary metabolism. Secreted proteases and extracellular secretion apparatus such as type IV pilus for twitching motility and type III secretion effectors indicate putative factors recognized by the host. Taken together, these results suggest intense degradation processes, oxidative stress, and general arrest of the biosynthetic metabolism in infected nuts. Our results provide insights into molecular mechanisms and highlight potential molecular tools for early detection and disease control strategies.


Asunto(s)
Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Juglans/metabolismo , Juglans/microbiología , Enfermedades de las Plantas/microbiología , Proteoma , Proteómica , Infecciones Bacterianas/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Juglans/genética , Enfermedades de las Plantas/genética , Proteómica/métodos
15.
Exp Eye Res ; 179: 32-46, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30359574

RESUMEN

Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and ßB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Expresión Génica/fisiología , Cristalino/metabolismo , Proteoma/fisiología , Transcriptoma/fisiología , Animales , Animales Recién Nacidos , Cromatografía Liquida , Cristalinas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Perfilación de la Expresión Génica , Cristalino/citología , Ratones , Proteómica , ARN Mensajero/genética , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo
16.
Mol Cell Proteomics ; 16(5): 873-890, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28325852

RESUMEN

The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.


Asunto(s)
Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Dieta Alta en Grasa , Epidídimo/metabolismo , Espectrometría de Masas/métodos , Proteoma/metabolismo , Animales , Redes Reguladoras de Genes , Immunoblotting , Masculino , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Proteómica , Reproducibilidad de los Resultados , Tamaño de la Muestra
17.
PLoS Pathog ; 10(2): e1003938, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586154

RESUMEN

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Asunto(s)
Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteoma/metabolismo , Estrés Fisiológico/fisiología , Cromatografía Liquida , Humanos , Purinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
18.
Mol Cell Proteomics ; 13(2): 606-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24319057

RESUMEN

During development of the chick cochlea, actin crosslinkers and barbed-end cappers presumably influence growth and remodeling of the actin paracrystal of hair cell stereocilia. We used mass spectrometry to identify and quantify major actin-associated proteins of the cochlear sensory epithelium from E14 to E21, when stereocilia widen and lengthen. Tight actin crosslinkers (i.e. fascins, plastins, and espin) are expressed dynamically during cochlear epithelium development between E7 and E21, with FSCN2 replacing FSCN1 and plastins remaining low in abundance. Capping protein, a barbed-end actin capper, is located at stereocilia tips; it is abundant during growth phase II, when stereocilia have ceased elongating and are increasing in diameter. Capping protein levels then decline during growth phase III, when stereocilia reinitiate barbed-end elongation. Although actin crosslinkers are readily detected by electron microscopy in developing chick cochlea stereocilia, quantitative mass spectrometry of stereocilia isolated from E21 chick cochlea indicated that tight crosslinkers are present there in stoichiometric ratios relative to actin that are much lower than their ratios for vestibular stereocilia. These results demonstrate the value of quantitation of global protein expression in chick cochlea during stereocilia development.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Estereocilios/metabolismo , Proteínas de Capping de la Actina/genética , Animales , Embrión de Pollo/metabolismo , Cóclea/embriología , Cóclea/metabolismo , Desarrollo Embrionario/fisiología , Epitelio/embriología , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Espectrometría de Masas/métodos , Proteínas de Microfilamentos/genética , Unión Proteica , Estereocilios/fisiología
19.
Proc Natl Acad Sci U S A ; 109(5): E268-77, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307652

RESUMEN

Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level.


Asunto(s)
Cóclea/metabolismo , Metabolismo Energético , Vestíbulo del Laberinto/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Pollos , Cromatografía Liquida , Cóclea/irrigación sanguínea , Electroforesis en Gel de Poliacrilamida , Epitelio/metabolismo , Glucólisis , Neovascularización Fisiológica , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Espectrometría de Masas en Tándem
20.
J Proteome Res ; 13(3): 1177-89, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24450463

RESUMEN

Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. To study the developmental processes that require intact ubiquitin, we executed the most extensive characterization of the lens proteome to date. We quantified lens protein expression changes in multiple replicate pools of P1 wild-type and K6W-Ub-expressing mouse lenses. Lens proteins were digested with trypsin, peptides were separated using strong cation exchange and reversed-phase liquid chromatography, and tandem mass (MS/MS) spectra were collected with a linear ion trap. Transgenic mice that expressed low levels of K6W-Ub (low expressers) had normal, clear lenses at birth, whereas the lenses that expressed high levels of K6W-Ub (higher expressers) had abnormal lenses and cataracts at birth. A total of 2052 proteins were identified, of which 996 were reliably quantified and compared between wild-type and K6W-Ub transgenic mice. Consistent with a delayed developmental program, fiber-cell-specific proteins, such as γ-crystallins (γA, γB, γC, and γE), were down-regulated in K6W-Ub higher expressers. Up-regulated proteins were involved in energy metabolism, signal transduction, and proteolysis. The K6W-Ub low expressers exhibited delayed onset and milder cataract consistent with smaller changes in protein expression. Because lens protein expression changes occurred prior to lens morphological abnormalities and cataract formation in K6W-Ub low expressers, it appears that expression of K6W-Ub sets in motion a process of altered protein expression that results in developmental defects and cataract.


Asunto(s)
Catarata/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Cristalino/metabolismo , Proteoma/genética , Ubiquitina/genética , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Catarata/metabolismo , Catarata/patología , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Cristalino/patología , Lisina/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Triptófano/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA