Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 167(4): 1099-1110, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35277777

RESUMEN

Screening of 10 environmental samples (mainly of rhizospheric origin) for lytic activity against two bacterial phytopathogens, Pseudomonas syringae pv. tomato DC3000 (CFBP2212) and Xanthomonas hortorum pv. vitians (CFBP3979), revealed that four samples harboured phages that were active against one strain. Only one sample, composed of an artisanal nettle liquid manure, contained phages able to lyse both strains. Electron microscopy revealed the presence of tailed bacteriophages, with all phages isolated on the Xanthomonas strain displaying a contractile tail typical of members of the family Myoviridae, whereas phages isolated on the Pseudomonas strain were related to members of the family Siphoviridae and short-tailed members of the family Podoviridae. Sequence analysis of the two Podoviridae-like bacteriophages isolated on Pseudomonas syringae pv. tomato, Pst_GM1 isolated from nettle manure and Pst_GIL1 isolated from infected lettuce leaves, revealed (i) strong homology between the two isolated phages, (ii) a high degree of sequence similarity to various phages isolated from various environments and from different geographical locations, and (iii) similarity of these phages to members of the family Autographiviridae, and more precisely, the genus Ghunavirus. Further investigation of the potential of nettle manure to host phages that could be active against a wider range of strains revealed that it contained phages active against 10 phytopathogens (out of 16 tested). Thus, nettle manure (and likely other plant manures) could represent a valuable source of phages, especially those targeting bacterial phytopathogens, in the same way that anthropized environments such as sewage are widely used as sources of phages active against opportunistic or acute pathogens of humans.


Asunto(s)
Bacteriófagos , Podoviridae , Humanos , Estiércol , Myoviridae , Pseudomonas syringae
2.
Plant Cell Environ ; 44(6): 1946-1960, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675052

RESUMEN

Plants rely on their microbiota for improving the nutritional status and environmental stress tolerance. Previous studies mainly focused on bipartite interactions (a plant challenged by a single microbe), while plant responses to multiple microbes have received limited attention. Here, we investigated local and systemic changes induced in wheat by two plant growth-promoting bacteria (PGPB), Azospirillum brasilense and Paraburkholderia graminis, either alone or together with an arbuscular mycorrhizal fungus (AMF). We conducted phenotypic, proteomic, and biochemical analyses to investigate bipartite (wheat-PGPB) and tripartite (wheat-PGPB-AMF) interactions, also upon a leaf pathogen infection. Results revealed that only AMF and A. brasilense promoted plant growth by activating photosynthesis and N assimilation which led to increased glucose and amino acid content. The bioprotective effect of the PGPB-AMF interactions on infected wheat plants depended on the PGPB-AMF combinations, which caused specific phenotypic and proteomic responses (elicitation of defense related proteins, immune response and jasmonic acid biosynthesis). In the whole, wheat responses strongly depended on the inoculum composition (single vs. multiple microbes) and the investigated organs (roots vs. leaf). Our findings showed that AMF is the best-performing microbe, suggesting its presence as the crucial one for synthetic microbial community development.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/microbiología , Inoculantes Agrícolas/fisiología , Azospirillum brasilense , Burkholderiaceae , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Proteómica/métodos , Triticum/metabolismo , Xanthomonas/patogenicidad
3.
J Integr Plant Biol ; 62(2): 228-246, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30920733

RESUMEN

Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.


Asunto(s)
Metabolómica/métodos , Oryza/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Ácidos Cumáricos/metabolismo , Hojas de la Planta/genética , Raíces de Plantas/genética , Putrescina/análogos & derivados , Putrescina/metabolismo
4.
Physiol Mol Biol Plants ; 26(12): 2537-2551, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424163

RESUMEN

Rhizosphere bacteria, whether phytopathogenic or phytobeneficial, are thought to be perceived by the plant as a threat. Plant Growth-Promoting Rhizobacteria (PGPR), such as many strains of the Azospirillum genus known as the main phytostimulator of cereals, cooperate with host plants and favorably affect their growth and health. An earlier study of rice root transcriptome, undertaken with two rice cultivars and two Azospirillum strains, revealed a strain-dependent response during the rice-Azospirillum association and showed that only a few genes, including some implicated in plant defense, were commonly regulated in all tested conditions. Here, a set of genes was selected from previous studies and their expression was monitored by qRT-PCR in rice roots inoculated with ten PGPR strains isolated from various plants and belonging to various genera (Azospirillum, Herbaspirillum, Paraburkholderia). A common expression pattern was highlighted for four genes that are proposed to be markers of the rice-PGPR interaction: two genes involved in diterpenoid phytoalexin biosynthesis (OsDXS3 and OsDTC2) and one coding for an uncharacterized protein (Os02g0582900) were significantly induced by PGPR whereas one defense-related gene encoding a pathogenesis-related protein (PR1b, Os01g0382000) was significantly repressed. Interestingly, exposure to a rice bacterial pathogen also triggered the expression of OsDXS3 while the expression of Os02g0582900 and PR1b was down-regulated, suggesting that these genes might play a key role in rice-bacteria interactions. Integration of these results with previous data led us to propose that the jasmonic acid signaling pathway might be triggered in rice roots upon inoculation with PGPR.

5.
Environ Microbiol ; 21(8): 3063-3075, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31170322

RESUMEN

Plasmids are mobile DNAs that can adjust host cell functions for their own amplification and dissemination. We identified Quorum sensing flagella small RNA regulator (QfsR), a small RNA, transcribed from the virulence tumour-inducing (Ti) plasmid in the phytopathogen Agrobacterium fabrum. QfsR is widely conserved throughout RepABC plasmids carried by Rhizobiaceae. Target prediction, expression analysis and site-direct mutagenesis experiments showed that QfsR directly pairs within polycistronic mRNAs transcribed from chromosome (genes involved in flagella apparatus) and Ti plasmid (genes involved in conjugative transfer). QfsR leads to a coordinated expression of whole polycistronic mRNA molecules. Whereas a lack of QfsR represses motility, its overproduction increases the quorum sensing signal accumulation and the Ti plasmid conjugative transfer. Based on these observations, we propose QfsR as a hub connecting regulatory networks of motility and plasmid conjugative transfer. To our knowledge, QfsR is the first example of a plasmid-encoded sRNA that controls chromosomal polycistronic gene expression.


Asunto(s)
Agrobacterium/genética , Cromosomas/fisiología , Plásmidos/genética , Percepción de Quorum/fisiología , ARN Bacteriano/genética , Agrobacterium/metabolismo , Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , ARN Bacteriano/metabolismo , Virulencia/genética
6.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902863

RESUMEN

Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in plantaIMPORTANCEParaburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderiaceae/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Burkholderiaceae/citología , Burkholderiaceae/genética , Burkholderiaceae/crecimiento & desarrollo , Liasas de Carbono-Azufre , Defensinas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Mutación , Inmunidad de la Planta , Raíces de Plantas/microbiología , Percepción de Quorum/genética , Estrés Fisiológico , Secuenciación Completa del Genoma
7.
Microbiology (Reading) ; 162(10): 1715-1734, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27609064

RESUMEN

Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Plantas/microbiología , Bacterias/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética
8.
BMC Genomics ; 16: 833, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26489830

RESUMEN

BACKGROUND: Two-component systems (TCS) play critical roles in sensing and responding to environmental cues. Azospirillum is a plant growth-promoting rhizobacterium living in the rhizosphere of many important crops. Despite numerous studies about its plant beneficial properties, little is known about how the bacterium senses and responds to its rhizospheric environment. The availability of complete genome sequenced from four Azospirillum strains (A. brasilense Sp245 and CBG 497, A. lipoferum 4B and Azospirillum sp. B510) offers the opportunity to conduct a comprehensive comparative analysis of the TCS gene family. RESULTS: Azospirillum genomes harbour a very large number of genes encoding TCS, and are especially enriched in hybrid histidine kinases (HyHK) genes compared to other plant-associated bacteria of similar genome sizes. We gained further insight into HyHK structure and architecture, revealing an intriguing complexity of these systems. An unusual proportion of TCS genes were orphaned or in complex clusters, and a high proportion of predicted soluble HKs compared to other plant-associated bacteria are reported. Phylogenetic analyses of the transmitter and receiver domains of A. lipoferum 4B HyHK indicate that expansion of this family mainly arose through horizontal gene transfer but also through gene duplications all along the diversification of the Azospirillum genus. By performing a genome-wide comparison of TCS, we unraveled important 'genus-defining' and 'plant-specifying' TCS. CONCLUSIONS: This study shed light on Azospirillum TCS which may confer important regulatory flexibility. Collectively, these findings highlight that Azospirillum genomes have broad potential for adaptation to fluctuating environments.


Asunto(s)
Azospirillum/genética , Azospirillum/metabolismo , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Genómica , Transducción de Señal , Evolución Biológica , Bases de Datos Genéticas , Genes Bacterianos , Genómica/métodos , Filogenia
9.
Planta ; 242(6): 1439-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303982

RESUMEN

MAIN CONCLUSION: Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant-bacteria biotic interactions.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Oryza/metabolismo , Oryza/microbiología , Azospirillum lipoferum/fisiología , Burkholderia/fisiología , Escherichia coli/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Metabolismo Secundario
10.
PLoS Genet ; 7(12): e1002430, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22216014

RESUMEN

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Asunto(s)
Organismos Acuáticos/genética , Azospirillum/genética , Evolución Biológica , Ecosistema , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Rhodospirillaceae/genética , Secuencia de Bases , Genes Esenciales/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética
11.
Microb Biotechnol ; 16(12): 2313-2325, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897154

RESUMEN

Parasitic weeds such as broomrapes (Phelipanche ramosa and Orobanche cumana) cause severe damage to crops and their development must be controlled. Given that phloroglucinol compounds (PGCs) produced by environmental Pseudomonas could be toxic towards certain plants, we assessed the potential herbicidal effect of the bacterial model Pseudomonas ogarae F113, a PGCs-producing bacterium, on parasitic weed. By combining the use of a mutagenesis approach and of pure PGCs, we evaluated the in vitro effect of PGC-produced by P. ogarae F113 on broomrape germination and assessed the protective activity of a PGC-producing bacteria on oilseed rape (Brassica napus) against P. ramosa in non-sterile soils. We showed that the inhibition of the germination depends on the PGCs molecular structure and their concentrations as well as the broomrape species and pathovars. This inhibition caused by the PGCs is irreversible, causing a brown coloration of the broomrape seeds. The inoculation of PGCs-producing bacteria limited the broomrape infection of P. ramosa, without affecting the host growth. Moreover, elemental profiling analysis of oilseed rape revealed that neither F113 nor applied PGCs affected the nutrition capacity of the oilseed rape host. Our study expands the knowledge on plant-beneficial Pseudomonas as weed biocontrol agents and opens new avenues for the development of natural bioherbicides to enhance crop yield.


Asunto(s)
Brassica napus , Orobanche , Orobanche/fisiología , Germinación , Malezas , Semillas
12.
J Bacteriol ; 194(7): 1840, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22408242

RESUMEN

Although bacteria of the genus Wolbachia induced significant extended phenotypes to infected hosts, most molecular mechanisms involved are still unknown. To gain insight into the bacterial genetic determinants, we sequenced the whole genome of Wolbachia wAlbB strain, a commensal obligate intracellular of the tiger mosquito Aedes albopictus.


Asunto(s)
Aedes/microbiología , Genoma Bacteriano , Insectos Vectores/microbiología , Wolbachia/genética , Aedes/fisiología , Animales , Secuencia de Bases , Insectos Vectores/fisiología , Datos de Secuencia Molecular , Filogenia , Simbiosis , Wolbachia/clasificación , Wolbachia/aislamiento & purificación , Wolbachia/fisiología
13.
Arch Microbiol ; 194(9): 725-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22481309

RESUMEN

The plant growth-promoting proteobacterium Azospirillum brasilense enhances growth of many economically important crops, such as wheat, maize, and rice. The sequencing and annotation of the 1.59-Mbp replicon of A. brasilense CBG497, a strain isolated from a maize rhizosphere grown on an alkaline soil in the northeast of Mexico, revealed a GC content of 68.7 % and the presence of 1,430 potential protein-encoding genes, 1,147 of them classified into clusters of orthologous groups categories, and 16 tRNA genes representing 11 tRNA species. The presence of sixty-two genes representatives of the minimal gene set and chromid core genes suggests its importance in bacterial survival. The phaAB â†’ G operon, reported as involved in the bacterial adaptation to alkaline pH in the presence of K(+), was also found on this replicon and detected in several Azospirillum strains. Phylogenetic analysis suggests that it was laterally acquired. We were not able to show its inference on the adaptation to basic pH, giving a hint about the presence of an alternative system for adaptation to alkaline pH.


Asunto(s)
Azospirillum brasilense/genética , Plásmidos/genética , Secuencia de Aminoácidos , Azospirillum/genética , Azospirillum brasilense/clasificación , Azospirillum brasilense/crecimiento & desarrollo , Secuencia de Bases , Transferencia de Gen Horizontal , Concentración de Iones de Hidrógeno , México , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia
14.
Metabolites ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323679

RESUMEN

Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat-Pseudomonas interaction.

15.
Microorganisms ; 10(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35208780

RESUMEN

The impact of inoculated plant growth-promoting rhizobacteria (PGPR) on its host physiology and nutrition depends on inoculum level. Whether the impact of the inoculated PGPR on the indigenous rhizosphere microbiota also varies with the PGPR inoculum level is unclear. Here, we tested this issue using the PGPR Azospirillum lipoferum CRT1-maize model system, where the initial seed inoculation is known to enhance maize growth and germination, and impacts the maize rhizomicrobiota, including microbial functional groups modulating plant growth. A. lipoferum CRT1 was added to the seeds at standard (105-6 cells.seed-1) or reduced (104-5 cells.seed-1) inoculation levels, in three fields. The effect of the two PGPR formulations was assessed on maize growth and on the nifH (nitrogen fixation), acdS (ACC deaminase activity) and phlD (2,4-diacetylphloroglucinol production) microbial functional groups. The size of the three functional groups was monitored by qPCR at the six-leaf stage and the flowering stage, and the diversity of the nifH and acdS functional groups (as well as the bacterial community) were estimated by MiSeq metabarcoding at the six-leaf stage. The results showed that the benefits of the reduced inoculant formulation were significant in two out of three fields, but different (often lower) than those of the standard formulation. The effects of formulations on the size of the three functional groups differed, and depended on field site and functional group. The reduced formulation had an impact on the diversity of nifH and acdS groups at one site, whereas the standard formulation had an impact at the two other sites. Inoculation significantly impacted the total bacterial community in the three fields, but only with the reduced formulation. In conclusion, the reduced inoculant formulation impacted the indigenous rhizosphere microbiota differently, but not less efficiently, than the standard formulation.

16.
Metabolites ; 11(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572622

RESUMEN

Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.

17.
J Bacteriol ; 191(9): 3059-67, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19270098

RESUMEN

To understand how the Rhizobium leguminosarum raiI-raiR quorum-sensing system is regulated, we identified mutants with decreased levels of RaiI-made N-acyl homoserine lactones (AHLs). A LuxR-type regulator, ExpR, is required for raiR expression, and RaiR is required to induce raiI. Since raiR (and raiI) expression is also reduced in cinI and cinR quorum-sensing mutants, we thought CinI-made AHLs may activate ExpR to induce raiR. However, added CinI-made AHLs did not induce raiR expression in a cinI mutant. The reduced raiR expression in cinI and cinR mutants was due to lack of expression of cinS immediately downstream of cinI. cinS encodes a 67-residue protein, translationally coupled to CinI, and cinS acts downstream of expR for raiR induction. Cloned cinS in R. leguminosarum caused an unusual collapse of colony structure, and this was delayed by mutation of expR. The phenotype looked like a loss of exopolysaccharide (EPS) integrity; mutations in cinI, cinR, cinS, and expR all reduced expression of plyB, encoding an EPS glycanase, and mutation of plyB abolished the effect of cloned cinS on colony morphology. We conclude that CinS and ExpR act to increase PlyB levels, thereby influencing the bacterial surface. CinS is conserved in other rhizobia, including Rhizobium etli; the previously observed effect of cinI and cinR mutations decreasing swarming in that strain is primarily due to a lack of CinS rather than a lack of CinI-made AHL. We conclude that CinS mediates quorum-sensing regulation because it is coregulated with an AHL synthase and demonstrate that its regulatory effects can occur in the absence of AHLs.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Rhizobium leguminosarum/fisiología , Transactivadores/fisiología , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/biosíntesis , Genes Reporteros , Modelos Biológicos
18.
Front Plant Sci ; 10: 978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417593

RESUMEN

The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.

19.
Mol Plant Microbe Interact ; 21(6): 831-42, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18624646

RESUMEN

In the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245, nitric oxide produced by denitrification could be a signal involved in stimulation of root branching, and the dissimilatory nitrite reductase gene nirK is upregulated on wheat roots. Here, it was found that Sp245 did not contain one copy of nirK but two (named nirK1 and nirK2), localized on two different plasmids, including one plasmid prone to rearrangements. Their deduced protein sequences displayed 99.2% identity but their promoter regions and upstream genetic environment differed. Phylogenetic studies revealed that nirK1 and nirK2 clustered next to most beta-proteobacterial sequences rather than in the vicinity of other Azospirillum spp. and most alpha-proteobacterial sequences, regardless of whether DNA or deduced protein sequences were used. This points to past horizontal gene transfers. Analysis of the number of nonsynonymous and synonymous substitutions per site indicated that nirK has been subjected to neutral selection in bacteria. The use of transcriptional fusions with egfp, encoding an enhanced green fluorescent protein variant, revealed that both nirK1 and nirK2 promoter regions were upregulated in vitro under microaerobiosis or the presence of nitrite as well as on wheat roots. The analysis of nirK1 and nirK2 mutants revealed that the two genes were functional. Overall, results suggest that nirK has been acquired horizontally by A. brasilense Sp245 from a distant relative and underwent subsequent duplication; however, both paralogs remained functional and retained their upregulation by the plant partner.


Asunto(s)
Azospirillum brasilense/genética , Proteínas Bacterianas/genética , Nitrito Reductasas/genética , Plásmidos/genética , Triticum/microbiología , Secuencia de Aminoácidos , Azospirillum brasilense/enzimología , Azospirillum brasilense/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Southern Blotting , Modelos Genéticos , Datos de Secuencia Molecular , Nitrito Reductasas/clasificación , Nitrito Reductasas/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Replicón/genética , Homología de Secuencia de Aminoácido
20.
Appl Environ Microbiol ; 74(3): 861-74, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18065619

RESUMEN

The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (phiAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the phiAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of phiAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd.


Asunto(s)
Azospirillum brasilense/virología , Azospirillum/clasificación , Azospirillum/virología , Bacteriófagos/aislamiento & purificación , Genoma Viral , Análisis de Secuencia de ADN , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Biología Computacional , ADN Viral/análisis , ADN Viral/aislamiento & purificación , Electroforesis en Gel de Campo Pulsado , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación , Siphoviridae/ultraestructura , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA