Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hippocampus ; 33(7): 811-829, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36808771

RESUMEN

A fundamental property of place cells in the hippocampus is the anchoring of their firing fields to salient landmarks within the environment. However, it is unclear how such information reaches the hippocampus. In the current experiment, we tested the hypothesis that the stimulus control exerted by distal visual landmarks requires input from the medial entorhinal cortex (MEC). Place cells were recorded from mice with ibotenic acid lesions of the MEC (n = 7) and from sham-lesioned mice (n = 6) following 90° rotations of either distal landmarks or proximal cues in a cue- controlled environment. We found that lesions of the MEC impaired the anchoring of place fields to distal landmarks, but not proximal cues. We also observed that, relative to sham-lesioned mice, place cells in animals with MEC lesions exhibited significantly reduced spatial information and increased sparsity. These results support the view that distal landmark information reaches the hippocampus via the MEC, but that proximal cue information can do so via an alternative neural pathway.


Asunto(s)
Corteza Entorrinal , Células de Lugar , Ratones , Animales , Corteza Entorrinal/patología , Hipocampo/patología , Vías Nerviosas , Señales (Psicología)
2.
J Neurosci Res ; 100(4): 1030-1046, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35187710

RESUMEN

Lateral entorhinal cortex (LEC) has been hypothesized to process nonspatial, item information that is combined with spatial information from medial entorhinal cortex to form episodic memories within the hippocampus. Recent studies, however, have demonstrated that LEC has a role in integrating features of episodic memory prior to the hippocampus. While the precise role of LEC is still unclear, anatomical studies show that LEC is ideally placed to be a hub integrating multisensory information. The current study tests whether the role of LEC in integrating information extends to long-term multimodal item-context associations. In Experiment 1, male rats were trained on a context-dependent odor discrimination task, where two different contexts served as the cue to the correct odor. Rats were pretrained on the task and then received either bilateral excitotoxic LEC or sham lesions. Following surgery, rats were tested on the previously learned odor-context associations. Control rats showed good memory for the previously learned association but rats with LEC lesions showed significantly impaired performance relative to both their own presurgery performance and to control rats. Experiment 2 went on to test whether impairments in Experiment 1 were the result of LEC lesions impairing either odor or context memory retention alone. Male rats were trained on simple odor and context discrimination tasks that did not require integration of features to solve. Following surgery, both LEC and control rats showed good memory for previously learned odors and contexts. These data show that LEC is critical for long-term odor-context associative memory.


Asunto(s)
Corteza Entorrinal , Odorantes , Animales , Hipocampo , Masculino , Memoria , Ratas
3.
Learn Mem ; 28(10): 390-399, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526383

RESUMEN

Reducing sensory experiences during the period that immediately follows learning improves long-term memory retention in healthy humans, and even preserves memory in patients with amnesia. To date, it is entirely unclear why this is the case, and identifying the neurobiological mechanisms underpinning this effect requires suitable animal models, which are currently lacking. Here, we describe a straightforward experimental procedure in rats that future studies can use to directly address this issue. Using this method, we replicated the central findings on quiet wakefulness obtained in humans: We show that rats that spent 1 h alone in a familiar dark and quiet chamber (the Black Box) after exploring two objects in an open field expressed long-term memory for the object locations 6 h later, while rats that instead directly went back into their home cage with their cage mates did not. We discovered that both visual stimulation and being together with conspecifics contributed to the memory loss in the home cage, as exposing rats either to light or to a cage mate in the Black Box was sufficient to disrupt memory for object locations. Our results suggest that in both rats and humans, everyday sensory experiences that normally follow learning in natural settings can interfere with processes that promote long-term memory retention, thereby causing forgetting in form of retroactive interference. The processes involved in this effect are not sleep-dependent because we prevented sleep in periods of reduced sensory experience. Our findings, which also have implications for research practices, describe a potentially useful method to study the neurobiological mechanisms that might explain why normal sensory processing after learning impairs memory both in healthy humans and in patients suffering from amnesia.


Asunto(s)
Memoria a Largo Plazo , Reconocimiento en Psicología , Animales , Humanos , Aprendizaje , Memoria , Ratas , Sueño
4.
J Neurophysiol ; 118(4): 2378-2388, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814638

RESUMEN

Hippocampal place cells support spatial cognition and are thought to form the neural substrate of a global "cognitive map." A widely held view is that parts of the hippocampus also underlie the ability to separate patterns or to provide different neural codes for distinct environments. However, a number of studies have shown that in environments composed of multiple, repeating compartments, place cells and other spatially modulated neurons show the same activity in each local area. This repetition of firing fields may reflect pattern completion and may make it difficult for animals to distinguish similar local environments. In this review we 1) highlight some of the navigation difficulties encountered by humans in repetitive environments, 2) summarize literature demonstrating that place and grid cells represent local and not global space, and 3) attempt to explain the origin of these phenomena. We argue that the repetition of firing fields can be a useful tool for understanding the relationship between grid cells in the entorhinal cortex and place cells in the hippocampus, the spatial inputs shared by these cells, and the propagation of spatially related signals through these structures.


Asunto(s)
Mapeo Encefálico , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Aprendizaje Espacial , Animales , Corteza Entorrinal/citología , Hipocampo/citología , Humanos , Neuronas/fisiología , Memoria Implícita
5.
Hum Mol Genet ; 24(21): 5977-84, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26243794

RESUMEN

Recent advances in techniques for manipulating genomes have allowed the generation of transgenic animals other than mice. These new models enable cross-mammalian comparison of neurological disease from core cellular pathophysiology to circuit and behavioural endophenotypes. Moreover they will enable us to directly test whether common cellular dysfunction or behavioural outcomes of a genetic mutation are more conserved across species. Using a new rat model of Fragile X Syndrome, we report that Fmr1 knockout (KO) rats exhibit elevated basal protein synthesis and an increase in mGluR-dependent long-term depression in CA1 of the hippocampus that is independent of new protein synthesis. These defects in plasticity are accompanied by an increase in dendritic spine density selectively in apical dendrites and subtle changes in dendritic spine morphology of CA1 pyramidal neurons. Behaviourally, Fmr1 KO rats show deficits in hippocampal-dependent, but not hippocampal-independent, forms of associative recognition memory indicating that the loss of fragile X mental retardation protein (FMRP) causes defects in episodic-like memory. In contrast to previous reports from mice, Fmr1 KO rats show no deficits in spatial reference memory reversal learning. One-trial spatial learning in a delayed matching to place water maze task was also not affected by the loss of FMRP in rats. This is the first evidence for conservation across mammalian species of cellular and physiological hippocampal phenotypes associated with the loss of FMRP. Furthermore, while key cellular phenotypes are conserved they manifest in distinct behavioural dysfunction. Finally, our data reveal novel information about the selective role of FMRP in hippocampus-dependent associative memory.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/fisiopatología , Hipocampo/fisiopatología , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Técnicas de Inactivación de Genes , Hipocampo/patología , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal , Células Piramidales/patología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
6.
Hippocampus ; 26(1): 118-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26190393

RESUMEN

Recent studies have shown that place cells in the hippocampus possess firing fields that repeat in physically similar, parallel environments. These results imply that it should be difficult for animals to distinguish parallel environments at a behavioral level. To test this, we trained rats on a novel odor-location task in an environment with four parallel compartments which had previously been shown to yield place field repetition. A second group of animals was trained on the same task, but with the compartments arranged in different directions, an arrangement we hypothesised would yield less place field repetition. Learning of the odor-location task in the parallel compartments was significantly impaired relative to learning in the radially arranged compartments. Fewer animals acquired the full discrimination in the parallel compartments compared to those trained in the radial compartments, and the former also required many more sessions to reach criterion compared to the latter. To confirm that the arrangement of compartments yielded differences in place cell repetition, in a separate group of animals we recorded from CA1 place cells in both environments. We found that CA1 place cells exhibited repeated fields across four parallel local compartments, but did not do so when the same compartments were arranged radially. To confirm that the differences in place field repetition across the parallel and radial compartments depended on their angular arrangement, and not incidental differences in access to an extra-maze visual landmark, we repeated the recordings in a second set of rats in the absence of the orientation landmark. We found, once again, that place fields showed repetition in parallel compartments, and did not do so in radially arranged compartments. Thus place field repetition, or lack thereof, in these compartments was not dependent on extra-maze cues. Together, these results imply that place field repetition constrains spatial learning.


Asunto(s)
Región CA1 Hipocampal/fisiología , Ambiente , Neuronas/fisiología , Aprendizaje Espacial/fisiología , Potenciales de Acción , Animales , Estudios de Cohortes , Discriminación en Psicología/fisiología , Electrodos Implantados , Masculino , Pruebas Neuropsicológicas , Odorantes , Percepción Olfatoria/fisiología , Estimulación Física , Ratas , Procesamiento de Señales Asistido por Computador
7.
Hippocampus ; 25(6): 709-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25788229

RESUMEN

The discovery of place cells by John O'Keefe in the early 1970s was a breakthrough not just for systems neuroscience, but also for psychology: place fields provided a clear neural substrate for the notion of a cognitive map, a construct devised to explain rat learning and spatial cognition. However, is the robust location-related firing of place cells still best conceptualised as a cognitive map? In this commentary, we reassess this view of hippocampus function in light of subsequent findings on place cells. We argue that as place fields encode local space, and as they are modulated by ongoing behavior, the representation they provide may be more cognitive than map-like.


Asunto(s)
Mapeo Encefálico , Cognición/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Percepción Espacial/fisiología , Animales , Humanos , Ratas
8.
Hippocampus ; 25(5): 643-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25483408

RESUMEN

In decision-making, an immediate reward is usually preferred to a delayed reward, even if the latter is larger. We tested whether the hippocampus is necessary for this form of temporal discounting, and for vicarious trial-and-error at the decision point. Rats were trained on a recently developed, adjustable delay-discounting task (Papale et al. (2012) Cogn Affect Behav Neurosci 12:513-526), which featured a choice between a small, nearly immediate reward, and a larger, delayed reward. Rats then received either hippocampus or sham lesions. Animals with hippocampus lesions adjusted the delay for the larger reward to a level similar to that of sham-lesioned animals, suggesting a similar valuation capacity. However, the hippocampus lesion group spent significantly longer investigating the small and large rewards in the first part of the sessions, and were less sensitive to changes in the amount of reward in the large reward maze arm. Both sham- and hippocampus-lesioned rats showed a greater amount of vicarious trial-and-error on trials in which the delay was adjusted. In a nonadjusting version of the delay discounting task, animals with hippocampus lesions showed more variability in their preference for a larger reward that was delayed by 10 s compared with sham-lesioned animals. To verify the lesion behaviorally, rat were subsequently trained on a water maze task, and rats with hippocampus lesions were significantly impaired compared with sham-lesioned animals. The findings on the delay discounting tasks suggest that damage to the hippocampus may impair the detection of reward magnitude.


Asunto(s)
Descuento por Demora/fisiología , Hipocampo/fisiología , Animales , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto , Pruebas Neuropsicológicas , Ratas , Recompensa , Factores de Tiempo
9.
Stress ; 18(3): 353-61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26383033

RESUMEN

Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.


Asunto(s)
Ansiedad , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Dexametasona/farmacología , Desarrollo Fetal/efectos de los fármacos , Glucocorticoides/farmacología , Efectos Tardíos de la Exposición Prenatal/psicología , Estrés Fisiológico/efectos de los fármacos , Animales , Femenino , Aprendizaje/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas
10.
J Neurosci ; 33(16): 6928-43, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595751

RESUMEN

Visual landmarks exert stimulus control over spatial behavior and the spatially tuned firing of place, head-direction, and grid cells in the rodent. However, the neural site of convergence for representations of landmarks and representations of space has yet to be identified. A potential site of plasticity underlying associations with landmarks is the postsubiculum. To test this, we blocked glutamatergic transmission in the rat postsubiculum with CNQX, or NMDA receptor-dependent plasticity with d-AP5. These infusions were sufficient to block evoked potentials from the lateral dorsal thalamus and long-term depression following tetanization of this input to the postsubiculum, respectively. In a second experiment, CNQX disrupted the stability of rat hippocampal place cell fields in a familiar environment. In a novel environment, blockade of plasticity with d-AP5 in the postsubiculum did not block the formation of a stable place field map following a 6 h delay. In a final behavioral experiment, postsubicular infusions of both compounds blocked object-location memory in the rat, but did not affect object recognition memory. These results suggest that the postsubiculum is necessary for the recognition of familiar environments, and that NMDA receptor-dependent plasticity in the postsubiculum is required for the formation of new object-place associations that support recognition memory. However, plasticity in the postsubiculum is not necessary for the formation of new spatial maps.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Conducta Espacial/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Estimulación Luminosa , Ratas , Reconocimiento en Psicología , Conducta Espacial/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
11.
Hippocampus ; 24(6): 684-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24677338

RESUMEN

The chances of developing psychiatric disorders in adulthood are increased when stress is experienced early in life. In particular, stress experienced in the childhood or 'prepubertal' phase is associated with the later development of disorders such as depression, anxiety, post-traumatic stress disorder, and psychosis. Relatively little is known about the biological basis of this effect, but one hypothesis is that prepubertal stress produces long-lasting changes in brain development, particularly in stress sensitive regions such as the hippocampus, leaving an individual vulnerable to disorders in adulthood. In this study, we used an animal model of prepubertal stress to investigate the hypothesis that prepubertal stress induces alterations in hippocampal function in adulthood. Male and female rats were exposed to a brief, variable prepubertal stress protocol (postnatal days 25-27), and their performance in two distinct hippocampal-dependent tasks (contextual fear and spatial navigation) was compared with controls in adulthood. Prepubertal stress significantly impaired contextual fear responses in males and enhanced performance in spatial navigation in females. These results demonstrate that exposure to a brief period of stress in the prepubertal phase alters hippocampal-dependent behaviors in adulthood in a sex-specific manner.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Animales , Peso Corporal , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Miedo , Femenino , Reacción Cataléptica de Congelación , Masculino , Pruebas Neuropsicológicas , Ratas , Ratas Endogámicas , Memoria Espacial/fisiología , Navegación Espacial/fisiología
12.
Nat Neurosci ; 27(4): 782-792, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491324

RESUMEN

The interplay between excitation and inhibition determines the fidelity of cortical representations. The receptive fields of excitatory neurons are often finely tuned to encoded features, but the principles governing the tuning of inhibitory neurons remain elusive. In this study, we recorded populations of neurons in the mouse postsubiculum (PoSub), where the majority of excitatory neurons are head-direction (HD) cells. We show that the tuning of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was broad and frequently radially symmetrical. By decomposing tuning curves using the Fourier transform, we identified an equivalence in tuning between PoSub-FS and PoSub-HD cell populations. Furthermore, recordings, optogenetic manipulations of upstream thalamic populations and computational modeling provide evidence that the tuning of PoSub-FS cells has a local origin. These findings support the notion that the equivalence of neuronal tuning between excitatory and inhibitory cell populations is an intrinsic property of local cortical networks.


Asunto(s)
Neuronas , Tálamo , Ratones , Animales , Neuronas/fisiología , Inhibición Neural/fisiología , Potenciales de Acción/fisiología
13.
Hippocampus ; 23(7): 559-69, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23418076

RESUMEN

The laterodorsal nucleus (LDN) of the thalamus provides a prominent afferent projection to the postsubiculum (dorsal presubiculum). To characterize synaptic transmission in this pathway, we placed stimulating electrodes in the LDN and recorded fEPSPs elicited in the postsubiculum of urethane-anesthetized rats. LDN stimulation elicited a source-sink dipole between the deep and superficial layers of the postsubiculum, respectively, consistent with anatomical evidence for the termination of thalamic afferents in the superficial layers of the structure, and the existence of deep layer neurons with apical dendrites extending into these layers. Postsubicular fEPSPs were typically 0.5-1.0 mV in amplitude, with a peak latency of approximately 6 ms. Consistent with anatomical observations, the short onset latency of fEPSPs elicited by LDN stimulation, and their ability to follow a 60-Hz train of stimulation, indicate that the projection is monosynaptic. Paired-pulse stimulation revealed pronounced paired-pulse depression that was maximal at 100 ms, suggesting that initial release probabilities are high at LDN-postsubiculum synapses, in common with many neocortical pathways. A conventional tetanus protocol that yields LTP in hippocampal pathways had no effect on postsubicular fEPSPs, but long-term depression could be induced by 60-Hz stimulation. Drug infusion studies revealed that synaptic transmission in the LDN-postsubiculum projection is predominantly AMPA-receptor mediated. Rats were implanted with indwelling infusion cannulae targeting the postsubiculum, and, after a recovery period, were anaesthetized withurethane, and implanted with stimulating and recording electrodes. Infusion of CNQX almost completely abolished postsubicular fEPSPs, whereas D-AP5 had little effect. However, 60-Hz LTD was blocked by D-AP5 infusion, revealing that this form of synaptic plasticity is NMDA-receptor dependent.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Núcleos Talámicos Laterales/fisiología , Vías Nerviosas/fisiología , Transmisión Sináptica/fisiología , Animales , Estimulación Eléctrica , Masculino , Ratas
14.
Behav Brain Sci ; 36(5): 548-9; discussion 571-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24103601

RESUMEN

In this commentary, we highlight a difficulty for metric navigation arising from recent data with grid and place cells: the integration of piecemeal representations of space in environments with repeated boundaries. Put simply, it is unclear how place and grid cells might provide a global representation of distance when their fields appear to represent repeated boundaries within an environment. One implication of this is that the capacity for spatial inferences may be limited.


Asunto(s)
Cognición/fisiología , Modelos Neurológicos , Percepción Espacial/fisiología , Conducta Espacial , Animales , Humanos
15.
J Neurosci ; 31(49): 18185-94, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22159130

RESUMEN

Myelinated axons have a distinct protein architecture essential for action potential propagation, neuronal communication, and maintaining cognitive function. Damage to myelinated axons, associated with cerebral hypoperfusion, contributes to age-related cognitive decline. We sought to determine early alterations in the protein architecture of myelinated axons and potential mechanisms after hypoperfusion. Using a mouse model of hypoperfusion, we assessed changes in proteins critical to the maintenance of paranodes, nodes of Ranvier, axon-glial integrity, axons, and myelin by confocal laser scanning microscopy. As early as 3 d after hypoperfusion, the paranodal septate-like junctions were damaged. This was marked by a progressive reduction of paranodal Neurofascin signal and a loss of septate-like junctions. Concurrent with paranodal disruption, there was a significant increase in nodal length, identified by Nav1.6 staining, with hypoperfusion. Disruption of axon-glial integrity was also determined after hypoperfusion by changes in the spatial distribution of myelin-associated glycoprotein staining. These nodal/paranodal changes were more pronounced after 1 month of hypoperfusion. In contrast, the nodal anchoring proteins AnkyrinG and Neurofascin 186 were unchanged and there were no overt changes in axonal and myelin integrity with hypoperfusion. A microarray analysis of white matter samples indicated that there were significant alterations in 129 genes. Subsequent analysis indicated alterations in biological pathways, including inflammatory responses, cytokine-cytokine receptor interactions, blood vessel development, and cell proliferation processes. Our results demonstrate that hypoperfusion leads to a rapid disruption of key proteins critical to the stability of the axon-glial connection that is mediated by a diversity of molecular events.


Asunto(s)
Axones/patología , Regulación de la Expresión Génica/fisiología , Hipoxia-Isquemia Encefálica/patología , Neuroglía/patología , Neuronas/patología , Factores de Edad , Animales , Ancirinas/metabolismo , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal , Enfermedad Crónica , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Tomografía con Microscopio Electrónico/métodos , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteína Básica de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6 , Fibras Nerviosas Mielínicas/metabolismo , Factores de Crecimiento Nervioso , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuroglía/metabolismo , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/patología , Transducción de Señal/fisiología , Canales de Sodio
16.
Front Behav Neurosci ; 16: 969871, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523755

RESUMEN

Introduction: Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods: In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results: In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion: Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.

17.
Brain Commun ; 4(6): fcac263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349120

RESUMEN

Mutations in the SYNGAP1 gene are one of the common predictors of neurodevelopmental disorders, commonly resulting in individuals developing autism, intellectual disability, epilepsy, and sleep deficits. EEG recordings in neurodevelopmental disorders show potential to identify clinically translatable biomarkers to both diagnose and track the progress of novel therapeutic strategies, as well as providing insight into underlying pathological mechanisms. In a rat model of SYNGAP1 haploinsufficiency in which the exons encoding the calcium/lipid binding and GTPase-activating protein domains have been deleted (Syngap+/Δ-GAP ), we analysed the duration and occurrence of wake, non-rapid eye movement and rapid eye movement brain states during 6 h multi-electrode EEG recordings. We find that although Syngap+/Δ-GAP animals spend an equivalent percent time in wake and sleep states, they have an abnormal brain state distribution as the number of wake and non-rapid eye movement bouts are reduced and there is an increase in the average duration of both wake and non-rapid eye movement epochs. We perform connectivity analysis by calculating the average imaginary coherence between electrode pairs at varying distance thresholds during these states. In group averages from pairs of electrodes at short distances from each other, a clear reduction in connectivity during non-rapid eye movement is present between 11.5 Hz and 29.5 Hz, a frequency range that overlaps with sleep spindles, oscillatory phenomena thought to be important for normal brain function and memory consolidation. Sleep abnormalities were mostly uncorrelated to the electrophysiological signature of absence seizures, spike and wave discharges, as was the imaginary coherence deficit. Sleep spindles occurrence, amplitude, power and spread across multiple electrodes were not reduced in Syngap+/Δ-GAP rats, with only a small decrease in duration detected. Nonetheless, by analysing the dynamic imaginary coherence during sleep spindles, we found a reduction in high-connectivity instances between short-distance electrode pairs. Finally comparing the dynamic imaginary coherence during sleep spindles between individual electrode pairs, we identified a group of channels over the right somatosensory, association and visual cortices that have a significant reduction in connectivity during sleep spindles in mutant animals. This matched a significant reduction in connectivity during spindles when averaged regional comparisons were made. These data suggest that Syngap+/Δ-GAP rats have altered brain state dynamics and EEG connectivity, which may have clinical relevance for SYNGAP1 haploinsufficiency in humans.

18.
Curr Biol ; 32(20): 4451-4464.e7, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36099915

RESUMEN

Neurons in the retrohippocampal cortices play crucial roles in spatial memory. Many retrohippocampal neurons have firing fields that are selectively active at specific locations, with memory for rewarded locations associated with reorganization of these firing fields. Whether this is the sole strategy for representing spatial memories is unclear. Here, we demonstrate that during a spatial memory task retrohippocampal neurons encode location through ramping activity that extends across segments of a linear track approaching and following a reward, with the rewarded location represented by offsets or switches in the slope of the ramping activity. Ramping representations could be maintained independently of trial outcome and cues marking the reward location, indicating that they result from recall of the track structure. When recorded in an open arena, neurons that generated ramping activity during the spatial memory task were more numerous than grid or border cells, with a majority showing spatial firing that did not meet criteria for classification as grid or border representations. Encoding of rewarded locations through offsets and switches in the slope of ramping activity also emerged in recurrent neural network models trained to solve a similar spatial memory task. Impaired performance of model networks following disruption of outputs from ramping neurons is consistent with this coding strategy supporting navigation to recalled locations of behavioral significance. Our results suggest that encoding of learned spaces by retrohippocampal networks employs both discrete firing fields and continuous ramping representations. We hypothesize that retrohippocampal ramping activity mediates readout of learned models for goal-directed navigation.


Asunto(s)
Hipocampo , Neuronas , Hipocampo/fisiología , Neuronas/fisiología , Corteza Cerebral , Memoria Espacial , Recompensa
19.
Mol Autism ; 13(1): 49, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36536454

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and autism spectrum disorder. Cognitive inflexibility is one of the hallmarks of FXS with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1-/y). METHODS: We recorded from the CA1 in Fmr1-/y and WT littermates over six 10-min exploration sessions in a novel environment-three sessions per day (ITI 10 min). Our recordings yielded 288 and 246 putative pyramidal cells from 7 WT and 7 Fmr1-/y rats, respectively. RESULTS: On the first day of exploration of a novel environment, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1-/y rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1-/y rats. These findings were consistent with increased excitability of Fmr1-/y CA1 neurons in ex vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were dis-coordinated with respect to hippocampal oscillatory activity in Fmr1-/y rats. LIMITATIONS: It is still unclear how the observed circuit function abnormalities give rise to behavioural deficits in Fmr1-/y rats. Future experiments will focus on this connection as well as the contribution of other neuronal cell types in the hippocampal circuit pathophysiology associated with the loss of FMRP. It would also be interesting to see if hippocampal circuit deficits converge with those seen in other rodent models of intellectual disability. CONCLUSIONS: In conclusion, we found that hippocampal place cells from Fmr1-/y rats show similar spatial firing properties as those from WT rats but do not show the same experience-dependent increase in spatial specificity or the experience-dependent changes in network coordination. Our findings offer support to a network-level origin of cognitive deficits in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratas , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo
20.
Mol Autism ; 13(1): 34, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850732

RESUMEN

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Asunto(s)
Trastorno Autístico , Animales , Trastorno Autístico/metabolismo , Miedo/fisiología , Congelación , Humanos , Neuronas/fisiología , Sustancia Gris Periacueductal/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA