Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2683: 275-289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300783

RESUMEN

Impairment of long-term potentiation (LTP) is a common feature of many preclinical models of neurological disorders. Modeling LTP on human induced pluripotent stem cells (hiPSC) enables the investigation of this critical plasticity process in disease-specific genetic backgrounds. Here, we describe a method to chemically induce LTP across entire networks of hiPSC-derived neurons on multi-electrode arrays (MEAs) and investigate effects on neuronal network activity and associated molecular changes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Electrodos , Plasticidad Neuronal
2.
Stem Cell Reports ; 17(9): 2141-2155, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35985330

RESUMEN

Impairment of long-term potentiation (LTP) is a common feature of many pre-clinical models of neurological disorders; however, studies in humans are limited by the inaccessibility of the brain. Human induced pluripotent stem cells (hiPSCs) provide a unique opportunity to study LTP in disease-specific genetic backgrounds. Here we describe a multi-electrode array (MEA)-based assay to investigate chemically induced LTP (cLTP) across entire networks of hiPSC-derived midbrain dopaminergic (DA) and cortical neuronal populations that lasts for days, allowing studies of the late phases of LTP and enabling detection of associated molecular changes. We show that cLTP on midbrain DA neuronal networks is largely independent of the N-methyl-D-aspartate receptor (NMDAR) and partially dependent on brain-derived neurotrophic factor (BDNF). Finally, we describe activity-regulated gene expression induced by cLTP. This cLTP-MEA assay platform will enable phenotype discovery and higher-throughput analyses of synaptic plasticity on hiPSC-derived neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciación a Largo Plazo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA