Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 444 Suppl 1: S219-S236, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753626

RESUMEN

How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFß signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFß signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFß signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Maxilares/embriología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Evolución Biológica , Cartílago/metabolismo , Movimiento Celular , Embrión de Pollo , Condrogénesis , Patos/embriología , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Maxilares/fisiología , Mandíbula/embriología , Mesodermo/embriología , Cresta Neural/embriología , Cresta Neural/fisiología , Codorniz/embriología , Transducción de Señal/fisiología , Especificidad de la Especie , Factor de Crecimiento Transformador beta/fisiología
2.
Development ; 141(3): 674-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449843

RESUMEN

Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss.


Asunto(s)
Patos/anatomía & histología , Maxilares/anatomía & histología , Desarrollo Maxilofacial , Codorniz/anatomía & histología , Animales , Encéfalo/anatomía & histología , Movimiento Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Mandíbula/anatomía & histología , Mandíbula/citología , Mandíbula/crecimiento & desarrollo , Cresta Neural/citología , Tamaño de los Órganos , Especificidad de la Especie
3.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712299

RESUMEN

Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.

4.
Sci Rep ; 11(1): 5871, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712657

RESUMEN

Wnt signaling plays a critical role in craniofacial patterning, as well as tooth and bone development. Rspo2 and Rspo3 are key regulators of Wnt signaling. However, their coordinated function and relative requirement in craniofacial development and odontogensis are poorly understood. We showed that in zebrafish rspo2 and rspo3 are both expressed in osteoprogenitors in the embryonic craniofacial skeleton. This is in contrast to mouse development, where Rspo3 is expressed in osteoprogenitors while Rspo2 expression is not observed. In zebrafish, rspo2 and rspo3 are broadly expressed in the pulp, odontoblasts and epithelial crypts. However, in the developing molars of the mouse, Rspo3 is largely expressed in the dental follicle and alveolar mesenchyme while Rspo2 expression is restricted to the tooth germ. While Rspo3 ablation in the mouse is embryonic lethal, zebrafish rspo3-/- mutants are viable with modest decrease in Meckel's cartilage rostral length. However, compound disruption of rspo3 and rspo2 revealed synergistic roles of these genes in cartilage morphogenesis, fin development, and pharyngeal tooth development. Adult rspo3-/- zebrafish mutants exhibit a dysmorphic cranial skeleton and decreased average tooth number. This study highlights the differential functions of Rspo2 and Rspo3 in dentocranial morphogenesis in zebrafish and in mouse.


Asunto(s)
Desarrollo Maxilofacial , Morfogénesis , Cráneo/crecimiento & desarrollo , Trombospondinas/metabolismo , Diente/crecimiento & desarrollo , Vía de Señalización Wnt , Pez Cebra/crecimiento & desarrollo , Animales , Cartílago/patología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Desarrollo Maxilofacial/genética , Ratones , Ratones Endogámicos C57BL , Morfogénesis/genética , Mutación/genética , Células Madre/metabolismo , Trombospondinas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Evodevo ; 10: 17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417668

RESUMEN

The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA