RESUMEN
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Asunto(s)
Duplicación de Gen , Edición Génica , Genoma Humano , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN/genética , Animales , Células Madre Embrionarias/metabolismo , Cromosomas Humanos/genéticaRESUMEN
SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Asunto(s)
Hipoglucemiantes/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Polimorfismo de Nucleótido Simple , Tejido Adiposo , Animales , Expresión Génica , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismoRESUMEN
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Animales , Humanos , Ratones , Adenoma/microbiología , Estudios de Casos y Controles , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Heces/microbiología , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/patogenicidad , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Genoma Bacteriano/genética , Boca/microbiología , FemeninoRESUMEN
Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.
Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/patología , Endorribonucleasas/metabolismo , Macrófagos/fisiología , Obesidad/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diferenciación Celular/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Metabolismo Energético/genética , Humanos , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.
Asunto(s)
Dendritas , Proteínas de Drosophila , Proteínas Asociadas a Microtúbulos , Microtúbulos , Animales , Microtúbulos/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Drosophila melanogaster/metabolismo , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/citologíaRESUMEN
Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health1-4. These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome5. Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5'-viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases6,7. Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.
Asunto(s)
Arenavirus del Nuevo Mundo/enzimología , Microscopía por Crioelectrón , Virus Lassa/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/ultraestructura , Replicación Viral , Apoenzimas/química , Apoenzimas/metabolismo , Apoenzimas/ultraestructura , Arenavirus del Nuevo Mundo/ultraestructura , Dominio Catalítico , Virus Lassa/ultraestructura , Virus de la Coriomeningitis Linfocítica/enzimología , Virus de la Coriomeningitis Linfocítica/ultraestructura , Modelos Moleculares , Regiones Promotoras Genéticas/genética , ARN Polimerasa Dependiente del ARN/metabolismoRESUMEN
Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes (DUBs) and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD (ThUBD) for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly 3 times greater than that of the Control method. Then, 8 types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by ThUBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.
RESUMEN
Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H2S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap's dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H2S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.
Asunto(s)
Luminiscencia , Sondas Moleculares , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodosRESUMEN
Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments.
Asunto(s)
Brachypodium , Brachypodium/genética , Diploidia , Aislamiento Reproductivo , Ecosistema , Genoma de Planta/genética , Especiación GenéticaRESUMEN
Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.
Asunto(s)
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/toxicidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacosRESUMEN
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Asunto(s)
Anseriformes , Factor B de Elongación Transcripcional Positiva , Proteínas de Unión al ARN , Factores de Transcripción , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transcripción Viral , AnimalesRESUMEN
Knocking out genes encoding proteins that downregulate the accumulation of pigments may lead to increases in crop quality and yield. PSEUDO-ETIOLATION IN LIGHT 1 (PEL1) downregulates the accumulation of carotenoids in carrot and chlorophyll in Arabidopsis and rice and may inhibit GOLDEN 2-LIKE (GLK) transcription factors. PEL1 belongs to a previously unstudied gene family found only in plants. We used CRISPR/Cas9 technology to knock out each member of the 4-member PEL gene family and both GLK genes in Arabidopsis. In pel mutants, chlorophyll levels were elevated in seedlings; after flowering, chloroplasts increased in size, and anthocyanin levels increased. Although the chlorophyll-deficient phenotype of glk1 glk2 was epistatic to pel1 pel2 pel3 pel4 in most of our experiments, glk1 glk2 was not epistatic to pel1 pel2 pel3 pel4 for the accumulation of anthocyanins in most of our experiments. The pel alleles attenuated growth, altered the accumulation of nutrients in seeds, disrupted an abscisic acid-inducible inhibition of seedling growth response that promotes drought tolerance, and affected the expression of genes associated with diverse biological functions, such as stress responses, cell wall metabolism hormone responses, signaling, growth, and the accumulation of phenylpropanoids and pigments. We found that PEL proteins specifically bind 6 transcription factors that influence the accumulation of anthocyanins, GLK2, and the carboxy termini of GLK1 and Arabidopsis thaliana myeloblastosis oncogene homolog 4 (AtMYB4). Our data indicate that the PEL proteins influence the accumulation of chlorophyll and many other processes, possibly by inhibiting GLK transcription factors and via other mechanisms, and that multiple mechanisms downregulate chlorophyll content.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Antocianinas , Arabidopsis/genética , Etiolado , Clorofila , Proteínas de Arabidopsis/genéticaRESUMEN
Programmed cell death (PCD) is integral to plant life and required for stress responses, immunity, and development. Our understanding of the regulation of PCD is incomplete, especially concerning regulators involved in multiple divergent processes. The botrytis-susceptible (bos1) mutant of Arabidopsis is highly susceptible to fungal infection by Botrytis cinerea (Botrytis). BOS1 (also known as MYB108) regulates cell death propagation during plant responses to wounding. The bos1-1 allele contains a T-DNA insertion in the 5'-untranslated region upstream of the start codon. This insertion results in elevated expression of BOS1/MYB108. We used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) system (CRISPR/Cas9) to create new bos1 alleles with disrupted exons, and found that these lines lacked the typical bos1-1 wounding and Botrytis phenotypes. They did exhibit reduced fertility, as was previously observed in other bos1 alleles. Resequencing of the bos1-1 genome confirmed the presence of a mannopine synthase (MAS) promoter at the T-DNA left border. Expression of the BOS1 gene under control of the MAS promoter in wild-type plants conferred the characteristic phenotypes of bos1-1: Botrytis sensitivity and response to wounding. Multiple overexpression lines demonstrated that BOS1 was involved in regulation of cell death propagation in a dosage-dependent manner. Our data indicate that bos1-1 is a gain-of-function mutant and that BOS1 function in regulation of fertility and Botrytis response can both be understood as misregulated cell death.
Asunto(s)
Arabidopsis , Botrytis , Arabidopsis/metabolismo , Botrytis/fisiología , Síndrome Branquio Oto Renal , Muerte Celular/genética , Codón Iniciador , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regiones no TraducidasRESUMEN
Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1ß) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.
Asunto(s)
Microglía , Esquizofrenia , Gemelos Monocigóticos , Humanos , Microglía/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Sulfóxidos/farmacología , Inflamación/genética , Inflamación/metabolismo , Persona de Mediana Edad , IsotiocianatosRESUMEN
Parlous structure integrity of the cathode and erratic interfacial microdynamics under high potential take responsibility for the degradation of solid-state lithium metal batteries (LMBs). Here, high-voltage LMBs have been operated by modulating the polymer electrolyte intrinsic structure through an intermediate dielectric constant solvent and further inducing the gradient solid-state electrolyte interphase. Benefiting from the chemical adsorption between trimethyl phosphate (TMP) and the cathode, the gradient interphase rich in LiPFxOy and LiF is induced, thereby ensuring the structural integrity and interface compatibility of the commercial LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode even at the 4.9 V cutoff voltage. Eventually, the specific capacity of NCM811|Li full cell based on TMP-modulated polymer electrolyte increased by 27.7% from 4.5 to 4.9 V. Such a universal screening method of electrolyte solvents and its derived electrode interfacial manipulation strategy opens fresh avenues for quasi-solid-state LMBs with high specific energy.
RESUMEN
The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.
Asunto(s)
Glioblastoma , Glioma , Nanopartículas , Nitrofenoles , Humanos , Glioblastoma/patología , Rayos X , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Nanopartículas/química , Quimioradioterapia , DoxorrubicinaRESUMEN
BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.
Asunto(s)
Enfermedades de las Aves de Corral , Riemerella , Animales , Serogrupo , Estudio de Asociación del Genoma Completo , Riemerella/genética , Patos/genética , Patos/microbiología , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
BAFF, a vital B cell survival and differentiation factor, has three receptors: B-cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) and BR3. Although B cells are greatly reduced in B6.Baff-/- (which harbour no BAFF) and B6.Br3-/- mice (which harbour supra-normal levels of BAFF), the distributions of B cell subsets and relationships between Foxp3+ and CD4+ cells in these mice differ. Using a large panel of B6 congenic knockout and/or transgenic mice, we demonstrate that (1) supra-normal levels of BAFF per se do not explain the phenotypic differences between B6.Baff-/- and B6.Br3-/- mice; (2) B cells are expanded in B6.Taci-/- mice, with preferential expansion of follicular (FO) B cells at the expense of CD19+CD21-/loCD23-/lo B cells but without the preferential expansion of Foxp3+ cells observed in B6 mice bearing a Baff transgene; (3) despite no expansion in total B cells, percentages of FO B cells and marginal zone B cells are higher and percentages of CD19+CD21-/loCD23-/lo B cells are lower in young B6.Bcma-/- mice, consistent with the inability of B6.Br3-/-.Taci-/- mice to recapitulate the B cell profile of B6.Baff-/- mice; and (4) percentages of Foxp3+ cells in B6.Br3-/-.Taci-/- mice are intermediate between those in B6.Br3-/- and B6.Taci-/- mice despite the B cell profile of B6.Br3-/-.Taci-/- mice strongly resembling that of B6.Br3-/- mice. Collectively, our findings point to a non-redundant role for each of the BAFF receptors in determining the ultimate lymphocyte profile of the host. This may have clinically relevant ramifications in that the degree that a candidate therapeutic agent blocks engagement of any given individual BAFF receptor may affect its clinical utility.
RESUMEN
Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.
RESUMEN
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.