Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 19(38): e2207185, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226387

RESUMEN

Two-dimensional (2D) Ruddlesden-Popper (RP) layered halide perovskite has attracted wide attentions due to its unique structure and excellent optoelectronic properties. With inserting organic cations, inorganic octahedrons are forced to extend in a certain direction, resulting in an asymmetric 2D perovskite crystal structure and causing spontaneous polarization. The pyroelectric effect resulted from spontaneous polarization exhibits a broad prospect in the application of optoelectronic devices. Herein, 2D RP polycrystalline perovskite (BA)2 (MA)3 Pb4 I13 film with excellent crystal orientation is fabricated by hot-casting deposition, and a class of 2D hybrid perovskite photodetectors (PDs) with pyro-phototronic effect is proposed, achieving temperature and light detection with greatly improved performance by coupling multiple energies. Because of the pyro-phototronic effect, the current is ≈35 times to that of the photovoltaic effect current under 0 V bias. The responsivity and detectivity are 12.7 mA W-1 and 1.73 × 1011 Jones, and the on/off ratio can reach 3.97 × 103 . Furthermore, the influences of bias voltage, light power density, and frequency on the pyro-phototronic effect of 2D RP polycrystalline perovskite PDs are explored. The coupling of spontaneous polarization and light facilitates photo-induced carrier dissociation and tunes the carrier transport process, making 2D RP perovskites a competitive candidate for next-generation photonic devices.

2.
Environ Res ; 216(Pt 4): 114837, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400223

RESUMEN

Nitrate pollution of groundwater has become an increasingly serious environmental problem that poses a great threat to aquatic ecosystems and to human health. Previous studies have shown that solid-phase humin (HM) can act as an additional electron donor to support microbial denitrification in the bioremediation of nitrate-contaminated groundwater where electron donor is deficient. However, the electron-donating capacities of HMs vary widely. In this study, we introduced ferrihydrite and prepared ferrihydrite-humin (Fh-HM) coprecipitates via biotic means to strengthen their electron-donating capacities. The spectroscopic results showed that the crystal phase of Fh did not change after coprecipitation with HM in the presence of Shewanella oneidensis MR-1, and iron may have complexed with the organic groups of HM. The Fh-HM coprecipitate prepared with an optimal initial Fh-HM mass ratio of 14:1 enhanced the microbial denitrification of Pseudomonas stutzeri with an electron-donating capacity 2.4-fold higher than that of HM alone, and the enhancement was not caused by greater bacterial growth. The alginate bead embedding assay indicated that the oxidation pathway of Fh-HM coprecipitate was mainly through direct contact between P. stutzeri and the coprecipitate. Further analyses suggested that quinone and organic-complexed Fe were the main electron-donating fractions of the coprecipitate. The results of the column experiments demonstrated that the column filled with Fh-HM-coated quartz sand exhibited a higher denitrification rate than the one filled with quartz sand, indicating its potential for practical applications.


Asunto(s)
Pseudomonas stutzeri , Humanos , Pseudomonas stutzeri/metabolismo , Nitratos/química , Desnitrificación , Electrones , Arena , Cuarzo/metabolismo , Ecosistema , Compuestos Férricos/química , Oxidación-Reducción , Compuestos Orgánicos
3.
Water Sci Technol ; 87(8): 2043-2060, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119171

RESUMEN

Previous study has shown that co-culturing acetogenic bacterium Sporomusa ovata (SO), with denitrifying bacterium Pseudomonas stutzeri (PS), is a promising strategy to enhance the microbial denitrification for nitrate-contaminated groundwater remediation. However, the mutual effects and reaction kinetics of these two bacteria in the co-culture system are poorly understood. In this study, a mathematical model for this co-culture system was established to fill this knowledge gap. Model simulation demonstrated that SO had a significant effect on the kinetics of denitrification by PS, while PS slightly affected the kinetics of acetate production by SO. The optimal initial HCO3-/NO3- ratio and SO/PS inoculation ratio were 0.77-1.48 and 67 for the co-culture system to achieve satisfied denitrification performance with less acetate accumulation. Finally, the minimum hydrogen supply was recommended when the initial bicarbonate and nitrate concentrations were assigned in the range of 2-20 mM and 2-4 mM for simulating the natural nitrate-contaminated groundwater treatment. These findings could provide useful insights to guide the operation and optimization of the denitrification co-culture system.


Asunto(s)
Pseudomonas stutzeri , Nitratos , Desnitrificación , Técnicas de Cocultivo , Bacterias , Acetatos , Modelos Teóricos
4.
J Environ Manage ; 306: 114497, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35038669

RESUMEN

Nitrate contamination of groundwater is a global problem. Enhanced biological nitrate reduction by liquid organics combined with low-cost natural materials (as electron donors) can cost-effectively remove nitrate from groundwater. Dissolved Mn(II) as an electron donor has been thoroughly investigated to support microbial nitrate reduction. However, most Mn in soil and sediments is in solid form, and the ability of solid-phase natural manganese oxide ore (NMO) as electron donor and for supporting microbial nitrate reduction is unknown. Therefore, a microcosm experiment was conducted to bridge this gap in knowledge. The results demonstrated that microbial nitrate reduction (mainly converted to nitrite) was enhanced by NMO (rich in cryptomelane). The electrochemical and X-ray photoelectron spectroscopy analyses suggested that NMO may be oxidized by microbial metabolism. Illumina Miseq sequencing results indicated that Acidovorax spp. played a crucial role in NMO-supported nitrate reduction. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that bacterial extracellular electron transfer may be one of the mechanisms for the microbial NMO oxidation. The results of our study highlight the potential importance of NMO in nitrate reduction in the natural environment and may pave the way for NMO-assisted technology for nitrate removal from groundwater with less usage of organic electron donors.


Asunto(s)
Comamonadaceae , Agua Subterránea , Electrones , Compuestos de Manganeso , Nitratos , Oxidación-Reducción , Óxidos , Filogenia
5.
J Environ Manage ; 310: 114793, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35220098

RESUMEN

Redox reactions between humic substances and Fe(III) compounds play a critical role in the biogeochemical cycle of pollutants. Most humic substances in soils and sediments are in a solid form (i.e. humin (HM)). In order to assess the contribution of electron shuttling via HM within the electron transfer network in natural environments and to predict environmental fate of pollutants associated with iron oxides, it is necessary to understand the electron transfer processes from HM to the environmentally relevant Fe(III) minerals, and to examine the redox reversibility of HM. The results of this study demonstrated that non-reduced HMs could only donate electrons to dissolved ferric citrate and poorly crystalline ferrihydrite, but reduced HMs could also reduce hematite and magnetite that had high crystallinity. The degree of reduction depended on the difference in redox potential and the crystallinity of the Fe(III) compounds. The electron-accepting capacities of different HMs correlated well with their organic carbon content, and quinones and Fe-bound organic component were important electron-accepting groups in HMs. Furthermore, the redox reversibility experiments demonstrated that HMs could maintain stable electron transfer capacities over three reduction-oxidation cycles, indicating that the HM could be an environmentally sustainable electron shuttle. Our results suggest that (1) HM may play an unrecognized and important role in biogeochemical cycles of pollutants in Fe(III) mineral-rich environments; (2) electron shuttling through HM to ferric citrate and ferrihydrite can occur even in the presence of O2; and (3) HM would be a promising material for environmental remediation.


Asunto(s)
Compuestos Férricos , Sustancias Húmicas , Compuestos Férricos/química , Sustancias Húmicas/análisis , Hierro , Oxidación-Reducción
6.
Environ Res ; 202: 111677, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34274333

RESUMEN

Solid-phase humic substances (humin) can work as an additional electron donor to support the low temperature denitrification but the reducing capacity of its non-reduced form is limited. In this study, a continuous-flow denitrifying BES with a humin-immobilized biocathode (H-BioC) was established. Humin was expected to function as a redox mediator and be persistently reduced on the cathode to provide reducing power to a denitrifying biofilm. Results showed that the H-BioC maintained a stable denitrification capacity with low nitrite accumulation for more than 100 days at 5 °C, and the specific microbial denitrification rate and electron transfer rate were 3.97-fold and 1.75-fold higher than those of the unaltered cathode. The results of repeated cycles of humin reduction and oxidation experiments further suggested that the redox activity of humin was stable. Acidovorax was the most dominant genus in both H-BioC biofilm and unaltered cathodic biofilm, while Rhodocyclaceae (unclassified_f_) was more enriched in H-BioC biofilm. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that biofilm formation, electron transfer, and nitrate reduction functions were more abundant in H-BioC, suggesting a possible enhancement mechanism by humin. The results of this study raise the possibility that immobilization of solid-phase humin may be a useful strategy for electrostimulated heterotrophic denitrification in groundwater where the indigenous bacteria have poor electroactivity.


Asunto(s)
Sustancias Húmicas , Nitratos , Reactores Biológicos , Desnitrificación , Oxidación-Reducción , Filogenia , Temperatura
7.
Environ Res ; 196: 110392, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33129856

RESUMEN

Reducing the use of liquid organic carbon electron donors during biostimulation of heterotrophic denitrification is critical for sustainable groundwater remediation. Solid-phase humin isolated from natural sources can provide a cost-effective alternative to classical electron donors. In this study, the low-temperature denitrification capacity of an acetate-fed microbial community was enhanced using humin at 20 °C and 10 °C. These enhancements were not caused by faster acetate consumption and greater bacterial growth with the addition of humin. Estimation of the electron balance and first-order kinetics suggested that the enhancement in denitrification occurred mainly after acetate exhaustion. Humin may therefore have acted as an additional electron donor for the denitrifying microbial community, with the reduced quinone group in humin potentially responsible for electron donation. The addition of humin increased the richness and diversity of the denitrifying microbial community, in which Dechloromonas spp. played a critical role. Given the prevalence of humin and denitrifiers using humic substances, our results have important implications in the bioremediation of nitrate-contaminated groundwater using less liquid organic carbon electron donors.


Asunto(s)
Agua Subterránea , Sustancias Húmicas , Desnitrificación , Consorcios Microbianos , Nitratos , Temperatura
8.
Environ Res ; 185: 109403, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240842

RESUMEN

An electrostimulated anaerobic-oxic integrated system was constructed for treating alizarin yellow R (AYR) containing wastewater. In electro-stimulated anaerobic unit, AYR decolorization efficiency improved from 51.2% to 96.6%. Two amination metabolites, p-phenylenediamine and 5-aminosalicylic acid, went through oxidation, ammonification and mineralization in oxic unit. Electro-stimulation promoted denitrification and COD removal efficiencies by 15.5% and 8.6%, respectively. A 20% improved nitrification efficiency was observed in oxic unit, due to elimination of AYR toxicity inhibition. No corrosion of heat-treated stainless steel occurred during the 60 days of continuous operation. Electrons sunk in denitrification and decolorization accounted for 34.4-36.8% of those released from COD removal, and 7.3% increase of removed nitrogen in nitrogenous compounds (AYR, nitrate and ammonia) was found. Electro-stimulated anaerobic unit predominated with fermentation and denitrification genera (Propionispira, Rhodocyclus, etc.) and aboundance of electro-active decolorization genus (Desulfovibrio, etc.) increased. Ammonia-oxidizing genus, Comamonas, was the most abundant in aerobic unit. Compared to the suspension, the electrostimulation could increased the abundance of electro-active genera in cathodic biofilm. This study revealed the feasibility of applying electro-stimulation and the conversion laws of nitrogenous organics in secondary bio-treatment system for treating toxic nitrogenous organics-contained wastewater.


Asunto(s)
Desnitrificación , Aguas Residuales , Anaerobiosis , Compuestos Azo , Reactores Biológicos , Nitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos
9.
Ecotoxicol Environ Saf ; 202: 110925, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800212

RESUMEN

Chlorinated hydrocarbon contamination in soils and groundwater has a severe negative impact on the human health. Microbial reductive dechlorination is a major degradation pathway of chlorinated hydrocarbon in anaerobic subsurface environments, has been extensively studied. Recent progress on the diversity of the reductive dechlorinators and the key enzymes of chlororespiration has been well reviewed. Here, we present a thorough overview of the studies related to bioremediation of chloroethenes and polychlorinated biphenyls based on enhanced in situ reductive dechlorination. The major part of this review is to provide an up-to-date summary of functional microorganisms which are either detected during in situ biostimulation or applied in bioaugmentation strategies. The applied biostimulants and corresponding reductive dechlorination products are also summarized and the future research needs are finally discussed.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos Clorados/metabolismo , Agua Subterránea , Halogenación , Bifenilos Policlorados , Cloruro de Vinilo
10.
Bioprocess Biosyst Eng ; 42(7): 1105-1114, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30911818

RESUMEN

Nitrate and phenol often co-occur in wastewater because of the complex industrial and agricultural processes, while the impacts of phenol on autotrophic denitrification remain unclear. Here, a sulfur and hydrogen-oxidizing autotrophic denitrification reactor was established, and the effects of different concentrations of phenol on the nitrate removal performance, kinetics, microbial communities, and functional genes were investigated. Increasing concentrations of phenol significantly decreased the denitrification efficiency in the reactor. The kinetic data indicate the limitation of nitrate diffusion may be one of reasons. Increasing phenol concentrations declined the activities of nitrate and nitrite reductases and induced the production of reactive oxygen species (ROS) and the release of lactate dehydrogenase (LDH), suggesting potential toxicity to the denitrifying consortium. Denitrifying gene nirK was most sensitive to phenol stresses in the reactor. In addition, Thauera was the predominant genus in system with and without phenol, Bacillus was enriched under high phenol concentrations.


Asunto(s)
Procesos Autotróficos/efectos de los fármacos , Bacillus/crecimiento & desarrollo , Desnitrificación/efectos de los fármacos , Microbiota/efectos de los fármacos , Fenol/farmacología , Thauera/crecimiento & desarrollo , Reactores Biológicos , Cinética , Aguas Residuales/microbiología
11.
Bioprocess Biosyst Eng ; 41(4): 449-455, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29249038

RESUMEN

A combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system was established to treat high concentration nitrate under different pH conditions in this study. The microbial communities and structures were evaluated to deeply reveal the nitrate removal mechanisms in this combined system. When initial pH was adjusted to 6.5, the CBSAD system obtained 66.45% denitrification efficiency. The combined system achieved highest nitrate removal efficiency of 96.84% at pH 7.5. However, nitrate removal efficiency decreased to 87.05% when initial pH increased to 8.5. Microbial analyses demonstrated that pH value slightly influenced the bacterial abundances and bacterial species in this CBSAD system under high nitrate concentration condition. Proteobacteria was the most dominant phylum in this system, which accounted for more than 90% of the total phyla. Epsilonproteobacteria, Betaproteobacteria, and Gammaproteobacteria were the most important classes for denitrification process. Genus Sulfurimonas was primarily responsible for high nitrate removal in this CBSAD system.


Asunto(s)
Procesos Autotróficos , Bacterias/crecimiento & desarrollo , Desnitrificación , Nitratos/metabolismo , Azufre/metabolismo , Concentración de Iones de Hidrógeno
12.
Bioresour Technol ; 399: 130603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499204

RESUMEN

This study presents a novel method for accelerating the granulation of methanogenic anaerobic granular sludge (AnGS) in an upflow anaerobic sludge blanket (UASB) reactor using solid-phase humin (HM). The results demonstrated that HM-mediated AnGS (HM-AnGS) formed rapidly within 50 days. The increase in particle size, settling velocity and mechanical strength was attributed to the rapid granulation of the HM-AnGS. The maximum methane yield of the HM-AnGS was 5-fold higher than that of the control group. This is consistent with the findings, which showed that HM-AnGS had 3.2-3.4 times more methyl-coenzyme M reductase (Mcr) activity and 2.4-2.9 times more adenosine triphosphate (ATP) than control groups. Molecular analyses indicate that HM most likely accelerated interspecies electron transfer (IET) in HM-AnGS (e.g., from Enterococcus to Methanosaeta). Furthermore, the HM-AnGS was effective in recovering energy from actual slaughterhouse wastewater.


Asunto(s)
Sustancias Húmicas , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Metano
13.
Environ Pollut ; 317: 120794, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36460188

RESUMEN

The anaerobic biodegradation of toluene proceeds very slowly owing to limited electron acceptors in contaminated aquifer. The liquid reagents traditionally used to enhance this process readily migrate away from the contaminated site, and continuous addition would cause secondary pollution. In our previous study, the reduced solid-phase humic substances (humin), which are redox active, were found to act as electron donors to promote the microbial reactions. Here, we provide new evidence that humin can promote the anaerobic biodegradation of toluene as a terminal electron acceptor. When inoculating nitrate-reducing (NR) and iron-reducing (IR) consortia with toluene degradation activities, the average toluene degradation rates reached 21.20 ± 1.18 µmol/(L·d) and 15.43 ± 0.41 µmol/(L·d) in the presence of a sediment humin (HMcj), and 94.69% ± 4.26% and 93.20% ± 3.73% of the electrons released from toluene oxidation to CO2 could be recovered by the reduction of HMcj, respectively. Spectroscopy analyses revealed that quinone moieties and nitrogen-containing moieties may be the electron-accepting groups of HMcj. Based on 16S rRNA sequencing, Cellulomonas spp. were the possible functional bacteria in the culture with NR consortium as the inoculum, while Azospira spp., Cellulomonas spp. and Bacillus spp. were the possible functional bacteria in the culture with IR consortium as the inoculum. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that toluene oxidation and extracellular electron transfer functions were more abundant in HMcj amended cultures, suggesting a possible enhancement mechanism by HMcj. Additionally, experiments using natural groundwater illustrated that toluene degradation was highly dependent on its concentration, HMcj dosage, pH, and salinity. The study of a column filled with HMcj-coated quartz sand demonstrated a desirable level of toluene degradation in a continuous-flow mode without the presence of other electron acceptors. This study provided an effective and green approach for the remediation of the toluene-contaminated groundwater.


Asunto(s)
Sustancias Húmicas , Tolueno , Tolueno/metabolismo , Anaerobiosis , Electrones , Suelo , ARN Ribosómico 16S/genética , Filogenia , Oxidación-Reducción , Biodegradación Ambiental
14.
ACS Appl Mater Interfaces ; 15(25): 30902-30912, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317029

RESUMEN

A droplet triboelectric nanogenerator (TENG) has great potential for harvesting the high entropy energy in water. Despite extensive research, it still suffers from low average power density, poor long-term stability, and insufficient flexibility. Here, a porous micronanostructured polytetrafluoroethylene (PTFE) with superhydrophobicity and self-cleaning ability, is generated by femtosecond laser direct processing. The droplet TENG with laser treated PTFE (LT-PTFE) dielectric layer (L-DTENG) can reach a higher output compared with the droplet TENG with a PTFE dielectric layer (P-DTENG). L-DTENG also demonstrated good long-term stability, self-cleaning ability, and flexibility, making it suitable for various applications, including those involving dust and sewage pollution, as well as bending and pressing conditions. Furthermore, a simulation of finite element method (FEM) and an equivalent circuit model are established to understand the working mechanism of L-DTENG. This multifunctional device and theoretical research provide a smart strategy to generate electricity in a complex environment and lay a solid foundation for droplet TENG applications on a large scale.

15.
Materials (Basel) ; 15(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35057367

RESUMEN

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.

16.
J Hazard Mater ; 439: 129671, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36104900

RESUMEN

The extracellular electron transfer (EET) is regarded as one of the crucial factors that limit the application of the bioelectrochemical system (BES). In this study, two different solid-phase redox mediators (RMs), biochar (1.2 g/L, T-B) and humin (1.2 g/L, T-H) were used for boosting the microorganisms accessing the electrons required for 2,4,6-TCP dechlorination under weak electrical stimulation (-0.278 V vs. Standard hydrogen electrode). BES with dissolved RM anthraquinone-2,6-disulfonate (AQDS 0.5 mmol/L, T-A) was used as a comparison. The results showed that dechlorination of 2,4,6-TCP could be greatly accelerated by biochar (1.78 d-1) and humin (1.50 d-1) than AQDS (0.24 d-1) and no RM control (T-M, 0.27 d-1). Moreover, phenol became the predominant dechlorination product in T-H (78.5 %) and T-B (63.0 %) instead of 4-CP in T-M (67.1 %) and T-A (89.8 %). Pseudomonas, Sulfurospirillum, Desulfuromonas, Dehalobacter, Anaeromyxobacter, and Dechloromonas belonging to Proteobacteria or Firmicutes rather than Chloroflexi might be responsible for the dechlorination activity. Notably, different RMs tended to stimulate distinct electroactive bacteria. Pseudomonas was the most abundant microorganism in T-M (41.92 %) and T-A (17.24 %), while Rhodobacter was most prevalent in T-H (20.04 %) and Azonexus was predominant in T-B (48.48 %). This study is essential in advancing the understanding of EET in BES for microbial degradation of organohalide contaminants under weak electrical stimulation.


Asunto(s)
Halogenación , Ácidos Alcanesulfónicos , Biodegradación Ambiental , Carbón Orgánico , Clorofenoles , Estimulación Eléctrica , Sustancias Húmicas
17.
Environ Pollut ; 291: 118157, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34530245

RESUMEN

Aroclor 1260, a commercial polychlorinated biphenyl (PCB) mixture, is highly recalcitrant to biotransformation. A negatively polarized cathode (-0.35 V vs. standard hydrogen electrode) was applied for the first time to a marine-origin PCB dechlorinating culture that substantially increased the microbial dechlorination rate of Aroclor 1260 (from 8.6 to 11.6 µM Cl- d-1); meta-chlorine removal was stimulated and higher proportions of tetra-CBs (43.2-46.6%), the predominant dechlorination products, were observed compared to the open circuit conditions (23.7-25.1%). The dechlorination rate was further enhanced (14.1 µM Cl- d-1) by amendment with humin as a solid-phase redox mediator. After the suspension culture was renewed using an anaerobic medium, dechlorination activity was effectively maintained solely by cathodic biofilms, where cyclic voltammetry results indicated their redox activity. Electric potential had a significant effect on microbial community structure in the cathodic biofilm, where a greater abundance of Dehalococcoides (2.59-3.02%), as potential dechlorinators, was observed compared to that in the suspension culture (0.41-0.55%). Moreover, Dehalococcoides adhering to the cathode showed a higher chlorine removal rate than in the suspension culture. These findings provide insights into the dechlorination mechanism of cathodic biofilms involving Dehalococcoides for PCB mixtures and extend the application prospects of bioremediation to PCB contamination in the natural environment.


Asunto(s)
Chloroflexi , Bifenilos Policlorados , Arocloros , Biodegradación Ambiental , Cloro , Sedimentos Geológicos
18.
J Nanosci Nanotechnol ; 21(5): 3134-3147, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653489

RESUMEN

A large amount of vinegar residue (VR) is generated every year in China, causing serious environmental pollutions. Meanwhile, as a kind of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) ubiquitously exist in environments. With a goal of reusing VR and reducing PAHs pollutions, we herein isolated one B. subtilis strain, ZL09-26, which can degrade phenanthrene and produce biosurfactants. Subsequently, raw VR was dried under different temperatures (50 °C, 80 °C, 100 °C and 120 °C) or pyrolyzed under 350 °C and 700 °C, respectively. After being characterized by various approaches, the treated VR were mixed with ZL09-26 as carriers to degrade phenanthrene. We found that VR dried at 50 °C (VR50) was the best in promoting the growth of ZL09-26 and the degradation of phenanthrene. This result may be attributed to the residual nutrients, suitable porosity and small surface charge of VR50. Our results demonstrate the potential of VR in the biodegradation of phenanthrene, which may be meaningful for developing new VR-based approaches to remove PAHs in aqueous environments.

19.
RSC Adv ; 9(2): 917-923, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35517598

RESUMEN

The properties of biochars derived from different raw materials (rice husk, bamboo, caragana, and garbage) and their effects on the microbial reductive dechlorination of pentachlorophenol (PCP) were investigated to understand how biochars influence the biotransformation of environmental pollutants. The results indicated that only caragana-derived biochar showed stable electron transfer activity for PCP dechlorination. Electro(chemical) analyses revealed that caragana biochar had the highest electrical conductivity (EC) (2.22 × 106 µS cm-1), while those of the other biochars were <1500 µS cm-1. The electron transfer capacities were within the ranges of 61.63-155.83 µmol e- g-1. Cyclic voltammetry analysis suggested that there were no obvious redox peaks for the biochars, while the Fourier transform infrared analysis showed similar transmission spectra with variable absorption intensity; this suggested that all biochars possessed similar structures and functional group classes and the enhancement of PCP dechlorination was not attributable to the redox reaction. Overall, the beneficial effects of caragana biochar on PCP dechlorination depended on the EC rather than the redox functional groups, possibly because high EC values enabled the highest electron transfer, and thus resulted in the greatest promotion of reductive dechlorination activity.

20.
Bioresour Technol ; 281: 41-47, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30785000

RESUMEN

Maintenance of stable pH during pyrite-oxidizing denitrification process is important. Here, we demonstrated effective pH control (7.80 ±â€¯0.20-8.40 ±â€¯0.30) in an electrochemical-H2 and pyrite-oxidizing denitrifying bioreactor (HPR) through in situ electrohydrogenesis. HPR achieved a higher nitrate removal activity (maximum:19.66 ±â€¯0.63 mg NO3--N/(L·h)) with excellent resistance to high nitrate loading (up to 400 mg/L NO3--N) compared to that of the control groups. Nitrate removal rate of HPR fitted the Michaelis-Menten kinetic model (R2 = 0.98, p < 0.01) well, and the denitrification followed the zero-order rate law. The results of the biofilm community analyses suggested that Thauera was the dominant bacteria in the cathode biofilm of HPR and may prefer hydrogen as an electron donor for autotrophic denitrification, while the relative abundance of Pseudomonas were similar in the cathode biofilm and pyrite biofilm. This study provides a new alternative for effective pH control in denitrifying bioreactors with pyrite as a packing material.


Asunto(s)
Reactores Biológicos/microbiología , Hierro/metabolismo , Sulfuros/metabolismo , Thauera/metabolismo , Procesos Autotróficos , Desnitrificación , Electrones , Concentración de Iones de Hidrógeno , Nitratos/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA