Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 79(5): 1005-1018, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820064

RESUMEN

BACKGROUND AND AIMS: Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS: We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS: CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.


Asunto(s)
Cirugía Bariátrica , Esteroide 12-alfa-Hidroxilasa , Ratones , Animales , Esteroide 12-alfa-Hidroxilasa/metabolismo , Regulación hacia Abajo , Obesidad/metabolismo , Gastrectomía , Ratones Endogámicos C57BL
2.
Nature ; 567(7749): 525-529, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814730

RESUMEN

T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Linfocitos T/metabolismo , Linfocitos T/patología , Acetilación , Animales , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Línea Celular Tumoral , Colitis/inmunología , Colitis/patología , Colitis/terapia , Epigénesis Genética , Femenino , Histonas/química , Histonas/metabolismo , Tolerancia Inmunológica/genética , Inmunoterapia , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Linfocitos T/inmunología , Factor de Transcripción AP-1/metabolismo , Transcripción Genética
3.
J Nanobiotechnology ; 21(1): 198, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340409

RESUMEN

BACKGROUND: Chronic pelvic pain syndrome (CPPS) is a typical symptom of chronic prostatitis (CP) in males that may cause abnormal urination, sexual dysfunction, or depression and significantly affect the quality of life of the patient. Currently, there is no effective treatment for CPPS due to its recurrence and intractability. For synergistic CPPS therapy, we developed pH/reactive oxygen species (ROS) dual-responsive dexamethasone (Dex) nanoformulations using a ROS-responsive moiety and phytochemical modified α-cyclodextrin (α-CD) as the carrier. RESULTS: Dex release from the nanoformulations can be controlled in acidic and/or ROS-rich microenvironments. The fabricated Dex nanoformulations can also be efficiently internalized by lipopolysaccharide (LPS)-stimulated macrophages, prostatic epithelial cells, and stromal cells. Moreover, the levels of proinflammatory factors (e.g., TNF-α, IL-1ß, and IL-17 A) in these cells were significantly decreased by Dex nanoformulations treatment through the release of Dex, phytochemical and elimination of ROS. In vivo experiments demonstrated notable accumulation of the Dex nanoformulations in prostate tissue to alleviate the symptoms of CPPS through the downregulation of proinflammatory factors. Interestingly, depression in mice may be relieved due to alleviation of their pelvic pain. CONCLUSION: We fabricated Dex nanoformulations for the effective management of CPPS and alleviation of depression in mice.


Asunto(s)
Dolor Crónico , Masculino , Ratones , Animales , Dolor Crónico/complicaciones , Dolor Crónico/terapia , Glucocorticoides , Calidad de Vida , Depresión , Especies Reactivas de Oxígeno , Dolor Pélvico/tratamiento farmacológico , Dolor Pélvico/etiología
4.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513205

RESUMEN

The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. In this report, we explored a novel strategy to design new structure fragments based on lithocholic acid (LCA) with improved hydrophilicity by introducing a polar "oxygen atom" into the side chain of LCA, then (i) either retaining the carboxylic acid group or replacing the carboxylic acid group with (ii) a diol group or (iii) a vinyl group. These novel fragments were evaluated using luciferase-based reporter assays and the MTS assay. Compared to LCA, the result revealed that the two lead compounds 1a-1b were well tolerated in vitro, maintaining similar potency and efficacy to LCA. The MTS assay results indicated that cell viability was not affected by dose dependence (under 25 µM). Additionally, computational model analysis demonstrated that compounds 1a-1b formed more extensive hydrogen bond networks with Takeda G protein-coupled receptor 5 (TGR5) than LCA. This strategy displayed a potential approach to explore the development of novel endogenous bile acids fragments. Further evaluation on the biological activities of the two lead compounds is ongoing.


Asunto(s)
Ácidos y Sales Biliares , Ácido Litocólico , Ácido Litocólico/farmacología , Ácidos y Sales Biliares/farmacología
5.
Hematol Oncol ; 40(3): 356-369, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35482553

RESUMEN

Concurrent translocations of MYC and BCL2 lead to abnormal expression of both oncoproteins, which contribute to the aggressive clinical characteristics of double-hit lymphoma (DHL). An effective therapy for DHL remains an unmet clinical need. In this study, we showed that both Ca2+ /calmodulin-dependent protein kinase II δ (CAMKIIδ) and γ (CAMKIIγ) were highly expressed in DHL. Both isoforms of CAMKII stabilize c-Myc protein by phosphorylating it at Ser62, increase BCL2 expression, and promote DHL tumor growth. Inhibition of CAMKIIδ and CAMKIIγ by either berbamine (BBM) or one of its derivatives (PA4) led to the down regulation of c-Myc and BCL2 proteins. BBM/PA4 also exhibited anti-tumor efficacy in DHL cell lines and NSG xenograft models. Altogether, CAMKIIδ and CAMKIIγ appear to be critical for DHL tumor development and are promising therapeutic targets for DHL.


Asunto(s)
Linfoma de Células B , Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Reordenamiento Génico , Humanos , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
6.
Gastroenterology ; 155(5): 1578-1592.e16, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063921

RESUMEN

BACKGROUND & AIMS: Bile acid transporters maintain bile acid homeostasis. Little is known about the functions of some transporters in cholestasis or their regulatory mechanism. We investigated the hepatic expression of solute carrier organic anion transporter family member 3A1 (SLCO3A1, also called OATP3A1) and assessed its functions during development of cholestasis. METHODS: We measured levels of OATP3A1 protein and messenger RNA and localized the protein in liver tissues from 22 patients with cholestasis and 21 patients without cholestasis, using real-time quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. We performed experiments with Slco3a1-knockout and C57BL/6J (control) mice. Mice and Sprague-Dawley rats underwent bile duct ligation (BDL) or a sham operation. Some mice were placed on a 1% cholic acid (CA) diet to induce cholestasis or on a control diet. Serum and liver tissues were collected and analyzed; hepatic levels of bile acids and 7-α-C4 were measured using liquid chromatography/mass spectrometry. Human primary hepatocytes and hepatoma (PLC/PRF/5) cell lines were used to study mechanisms that regulate OATP3A1 expression and transport. RESULTS: Hepatic levels of OATP3A1 messenger RNA and protein were significantly increased in liver tissues from patients with cholestasis and from rodents with BDL or 1% CA diet-induced cholestasis. Levels of fibroblast growth factor 19 (FGF19, FGF15 in rodents) were also increased in liver tissues from patients and rodents with cholestasis. FGF19 signaling activated the Sp1 transcription factor and nuclear factor κB to increase expression of OATP3A1 in hepatocytes; we found binding sites for these factors in the SLCO3A1 promoter. Slco3a1-knockout mice had shorter survival times and increased hepatic levels of bile acid, and they developed more liver injury after the 1% CA diet or BDL than control mice. In hepatoma cell lines, we found OATP3A1 to take prostaglandin E2 and thyroxine into cells and efflux bile acids. CONCLUSIONS: We found levels of OATP3A1 to be increased in cholestatic liver tissues from patients and rodents compared with healthy liver tissues. We show that OATP3A1 functions as a bile acid efflux transporter that is up-regulated as an adaptive response to cholestasis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Transportadores de Anión Orgánico/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Factores de Crecimiento de Fibroblastos/análisis , Factores de Crecimiento de Fibroblastos/fisiología , Humanos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico/análisis , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción Sp1/fisiología , Factor de Transcripción ReIA/fisiología
7.
Biochem Biophys Res Commun ; 508(4): 1227-1232, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30554655

RESUMEN

Hepatocellular carcinoma (HCC) is the most prevalent malignancy in liver and a leading cause of cancer-related deaths. Despite the pressing need for treatment options, patients with HCC develop significant resistance and adverse side effects to current approved drugs that becomes a major barrier to effective treatment. A natural product Tetrandrine (TET) is a potential alternative treatment option for HCC, with demonstrated effectiveness and low toxicity. However, the mechanisms by which Tetrandrine inhibits HCC are unclear. In the current study, we identify Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) as a potential TET drug target through structural modeling. Screening of a panel of HCC cell lines reveal differential sensitivities toward TET treatment. Interestingly, IC50 of TET inhibition of HCC cell proliferation is positively correlated with CaMKIIδ expression level in these distinct HCC cells. Furthermore, TET treatment resulted in a marked reduction of CaMKIIδ phosphorylation level, and knockdown of CaMKIIδ reduced the sensitivity of HCC cells to TET. Most importantly, CaMKIIδ protein levels in high-grade human HCC samples were significantly elevated as compared to normal liver tissues. Taken together, our studies demonstrate that the natural compound TET targets CaMKIIδ in HCC cells, and that CaMKIIδ level is a potential biomarker to identify HCC patient populations sensitive to Tetrandrine treatment.


Asunto(s)
Bencilisoquinolinas/uso terapéutico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Terapia Molecular Dirigida , Bencilisoquinolinas/química , Bencilisoquinolinas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Modelos Moleculares , Estadificación de Neoplasias , Fosforilación/efectos de los fármacos
8.
Histochem Cell Biol ; 147(5): 575-583, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28168650

RESUMEN

AE (alopecia and excoriation) is a mouse mutant phenotype that harbours a mutation in Gsdma3. Gsdma3 has been reported to regulate the development of skin and hair follicles. However, its role in the mammary glands has not been reported. In this study, we found that descendants bred from an AE mother died within 12 days after birth. Then, we found that the expression of Gsdma3 varied among the developmental stages of mammary glands. Subsequently, we systematically studied the phenotype of the mammary glands of AE and wild-type mice, revealing that the mammary glands were smaller in AE mice. The mammary glands of AE mice exhibited shorter ductal extension and less bifurcation. Immunohistochemistry staining indicated that the mammary glands of AE mice displayed more proliferating cells during puberty while secreting less ß-casein during pregnancy and lactation. The lymph nodes in the mammary glands of the AE mice were larger and showed some pigmentation, suggesting that the immune reaction in the mammary glands was up-regulated. Under a transmission electron microscope, residual bodies were observed in the lymph nodes in the mammary glands of AE mice. Thus, we report a new function of Gsdma3 in regulating the development of mammary glands, and we demonstrate that the Gsdma3 gene may act as a suppressor of the immune reaction.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Proteínas/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas/genética
9.
J Pathol ; 236(4): 467-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25866254

RESUMEN

Semaphorin-3F (SEMA3F), an axonal repulsant in nerve development, has been shown to inhibit the progression of human colorectal cancer (CRC); however, the underlying mechanism remains elusive. In this study we found a negative correlation between the levels of SEMA3F and CXCR4 in CRC specimens from 85 patients, confirmed by bioinformatics analysis of gene expression in 229 CRC samples from the Cancer Genome Atlas. SEMA3F(high) /CXCR4(low) patients showed the lowest frequency of lymph node and distant metastasis and the longest survival. Mechanistically, SEMA3F inhibited the invasion and metastasis of CRC cells through PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. Specifically, ASCL2 enhanced the invasion and metastasis of CRC cells in vitro and expression of ASCL2 correlated with distant metastasis, tumour size and poor overall survival in CRC patients. Treatment of CRC cells with the CXCR4 antagonist AMD3100 attenuated SEMA3F knockdown-induced invasion and metastasis of CRC cells in vitro and in vivo. Our study thus demonstrates that SEMA3F functions as a suppressor of CRC metastasis via down-regulating the ASCL2-CXCR4 axis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular , Neoplasias Colorrectales/enzimología , Neoplasias Hepáticas/enzimología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Genómica , Células HCT116 , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/secundario , Metástasis Linfática , Masculino , Proteínas de la Membrana/genética , Ratones Desnudos , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas del Tejido Nervioso/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral
10.
Mod Pathol ; 27(5): 775-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24201124

RESUMEN

Invasion and metastasis are the major cause of deaths in patients with esophageal cancer. In this study, we isolated cancer stem-like cells from an esophageal squamous cell carcinoma cell line EC109 based on aldehyde dehydrogenase 1A1 (ALDH1A1), and found that ALDH1A1(high) cells possessed the capacities of self-renewal, differentiation and tumor initiation, indications of stem cell properties. To support their stemness, ALDH1A1(high) cells exhibited increased potential of invasion and metastasis as compared with ALDH1A1(low) cells. ALDH1A1(high) esophageal squamous cell carcinoma cells expressed increased levels of mRNA for vimentin, matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9), but decreased the level of E-cadherin mRNA, suggesting that epithelial-mesenchymal transition and secretary MMPs may be attributed to the high invasive and metastatic capabilities of ALDH1A1(high) cells. Furthermore, we examined esophageal squamous cell carcinoma specimens from 165 patients and found that ALDH1A1(high) cells were associated with esophageal squamous dysplasia and the grades, differentiation and invasion depth, lymph node metastasis and UICC stage of esophageal squamous cell carcinoma, as well as poor prognosis of patients. Our results provide the strong evidence that ALDH1A1(high) cancer stem-like cells contribute to the invasion, metastasis and poor outcome of human esophageal squamous cell carcinoma.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Invasividad Neoplásica/patología , Células Madre Neoplásicas/metabolismo , Anciano , Familia de Aldehído Deshidrogenasa 1 , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Humanos , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Pronóstico , Retinal-Deshidrogenasa
11.
BMC Cancer ; 14: 444, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24938375

RESUMEN

BACKGROUND: Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) has been identified as a putative cancer stem cell (CSC) marker in breast cancer. However, the clinicopathological and prognostic significance of this protein in breast cancer patients remains controversial. METHODS: This meta-analysis was conducted to address the above issues using 15 publications covering 921 ALDH1A1(+) cases and 2353 controls. The overall and subcategory analyses were performed to detect the association between ALDH1A1 expression and clinicopathological/prognostic parameters in breast cancer patients. RESULTS: The overall analysis showed that higher expression of ALDH1A1 is associated with larger tumor size, higher histological grade, greater possibility of lymph node metastasis (LNM), higher level expression of epidermal growth factor receptor 2 (HER2), and lower level expression of estrogen receptor (ER)/progesterone receptor (PR). The prognosis of breast cancer patients with ALDH1A1(+) tumors was poorer than that of the ALDH1A1(-) patients. Although the relationships between ALDH1A1 expression and some clinicopathological parameters (tumor size, LNM, and the expression of HER2) was not definitive to some degree when we performed a subcategory analysis, the predictive values of ALDH1A1 expression for histological grade and survival of breast cancer patients were significant regardless of the different cutoff values of ALDH1A1 expression, the different districts where the patients were located, the different clinical stages of the patients, the difference in antibodies used in the studies, and the surgery status. CONCLUSIONS: Our results indicate that ALDH1A1 is a biomarker to predict tumor progression and poor survival of breast cancer patients. This marker should be taken into consideration in the development of new diagnostic and therapeutic program for breast cancer.


Asunto(s)
Aldehído Deshidrogenasa/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Familia de Aldehído Deshidrogenasa 1 , Biomarcadores de Tumor , Neoplasias de la Mama/mortalidad , Femenino , Expresión Génica , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Oportunidad Relativa , Pronóstico , Sesgo de Publicación , Retinal-Deshidrogenasa , Carga Tumoral
12.
J Immunol ; 189(1): 444-53, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22664874

RESUMEN

The invasion of malignant glioma cells into the surrounding normal brain tissues is crucial for causing the poor outcome of this tumor type. Recent studies suggest that glioma stem-like cells (GSLCs) mediate tumor invasion. However, it is not clear whether microenvironment factors, such as tumor-associated microglia/macrophages (TAM/Ms), also play important roles in promoting GSLC invasion. In this study, we found that in primary human gliomas and orthotopical transplanted syngeneic glioma, the number of TAM/Ms at the invasive front was correlated with the presence of CD133(+) GSLCs, and these TAM/Ms produced high levels of TGF-ß1. CD133(+) GSLCs isolated from murine transplanted gliomas exhibited higher invasive potential after being cocultured with TAM/Ms, and the invasiveness was inhibited by neutralization of TGF-ß1. We also found that human glioma-derived CD133(+) GSLCs became more invasive upon treatment with TGF-ß1. In addition, compared with CD133(-) committed tumor cells, CD133(+) GSLCs expressed higher levels of type II TGF-ß receptor (TGFBR2) mRNA and protein, and downregulation of TGFBR2 with short hairpin RNA inhibited the invasiveness of GSLCs. Mechanism studies revealed that TGF-ß1 released by TAM/Ms promoted the expression of MMP-9 by GSLCs, and TGFBR2 knockdown reduced the invasiveness of these cells in vivo. These results demonstrate that TAM/Ms enhance the invasiveness of CD133(+) GSLCs via the release of TGF-ß1, which increases the production of MMP-9 by GSLCs. Therefore, the TGF-ß1 signaling pathway is a potential therapeutic target for limiting the invasiveness of GSLCs.


Asunto(s)
Glioma/inmunología , Macrófagos/inmunología , Microglía/inmunología , Células Madre Neoplásicas/inmunología , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/fisiología , Regulación hacia Arriba/inmunología , Animales , Comunicación Celular/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Glioma/metabolismo , Glioma/patología , Humanos , Recuento de Leucocitos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Trasplante de Neoplasias/inmunología , Trasplante de Neoplasias/patología , Células Madre Neoplásicas/patología , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/biosíntesis
13.
Histol Histopathol ; : 18707, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38293776

RESUMEN

Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type IIb are the predominant causes of drug-refractory epilepsy in children. Dysmorphic neurons (DNs), giant cells (GCs), and balloon cells (BCs) are the most typical pathogenic profiles in cortical lesions of TSC and FCD IIb patients. However, mechanisms underlying the pathological processes of TSC and FCD IIb remain obscure. The Plexin-B2-Sema4C signalling pathway plays critical roles in neuronal morphogenesis and corticogenesis during the development of the central nervous system. However, the role of the Plexin-B2 system in the pathogenic process of TSC and FCD IIb has not been identified. In the present study, we investigated the expression and cell distribution characteristics of Plexin-B2 and Sema4C in TSC and FCD IIb lesions with molecular technologies. Our results showed that the mRNA and protein levels of Plexin-B2 expression were significantly increased both in TSC and FCD IIb lesions versus that in the control cortex. Notably, Plexin-B2 was also predominantly observed in GCs in TSC epileptic lesions and BCs in FCD IIb lesions. In contrast, the expression of Sema4C, the ligand of Plexin-B2, was significantly decreased in DNs, GCs, and BCs in TSC and FCD IIb epileptic lesions. Additionally, Plexin-B2 and Sema4C were expressed in astrocytes and microglia cells in TSC and FCD IIb lesions. Furthermore, the expression of Plexin-B2 was positively correlated with seizure frequency in TSC and FCD IIb patients. In conclusion, our results showed the Plexin-B2-Sema4C system was abnormally expressed in cortical lesions of TSC and FCD IIb patients, signifying that the Plexin-B2-Sema4C system may play a role in the pathogenic development of TSC and FCD IIb.

14.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37967356

RESUMEN

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Leucemia , Linfoma de Células T , Humanos , Ratones , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Bencilisoquinolinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
15.
Hepatology ; 56(3): 1004-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22473773

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) exhibits cellular heterogeneity and embryonic stem-cell-related genes are preferentially overexpressed in a fraction of cancer cells of poorly differentiated tumors. However, it is not known whether or how these cancer cells contribute to tumor initiation and progression. Here, our data showed that increased expression of pluripotency transcription factor Nanog in cancer cells correlates with a worse clinical outcome in HCC. Using the Nanog promoter as a reporter system, we could successfully isolate a small subpopulation of Nanog-positive cells. We demonstrate that Nanog-positive cells exhibited enhanced ability of self-renewal, clonogenicity, and initiation of tumors, which are consistent with crucial hallmarks in the definition of cancer stem cells (CSCs). Nanog(Pos) CSCs could differentiate into mature cancer cells in in vitro and in vivo conditions. In addition, we found that Nanog(Pos) CSCs exhibited resistance to therapeutic agents (e.g., sorafenib and cisplatin) and have a high capacity for tumor invasion and metastasis. Knock-down expression of Nanog in Nanog(Pos) CSCs could decrease self-renewal accompanied with decreased expression of stem-cell-related genes and increased expression of mature hepatocyte-related genes. Overexpression of Nanog in Nanog(Neg) cells could restore self-renewal. Furthermore, we found that insulin-like growth factor (IGF)2 and IGF receptor (IGF1R) were up-regulated in Nanog(Pos) CSCs. Knock-down expression of Nanog in Nanog(Pos) CSCs inhibited the expression of IGF1R, and overexpression of Nanog in Nanog(Neg) cells increased the expression of IGF1R. A specific inhibitor of IGF1R signaling could significantly inhibit self-renewal and Nanog expression, indicating that IGF1R signaling participated in Nanog-mediated self-renewal. CONCLUSION: These data indicate that Nanog could be a novel biomarker for CSCs in HCC, and that Nanog could play a crucial role in maintaining the self-renewal of CSCs through the IGF1R-signaling pathway.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de Homeodominio/fisiología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/fisiología , Receptor IGF Tipo 1/fisiología , Proteínas de Homeodominio/biosíntesis , Humanos , Proteína Homeótica Nanog , Transducción de Señal
16.
Stem Cells ; 30(2): 108-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22131169

RESUMEN

Malfunctioned gap junctional intercellular communication (GJIC) has been thought associated with malignant transformation of normal cells. However, the role of GJIC-related proteins such as connexins in sustaining the malignant behavior of cancer stem cells remains unclear. In this study, we obtained tumorspheres formed by glioma stem cells (GSCs) and adherent GSCs and then examined their GJIC. All GSCs showed reduced GJIC, and differentiated glioma cells had more gap junction-like structures than GSCs. GSCs expressed very low level of connexins, Cx43 in particular, which are key components of gap junction. We observed hypermethylation in the promoter of gap junction protein α1, which encodes Cx43 in GSCs. Reconstitution of Cx43 in GSCs inhibited their capacity of self-renewal, invasiveness, and tumorigenicity via influencing E-cadherin and its coding protein, which leads to changes in the expression of Wnt/ß-catenin targeting genes. Our results suggest that GSCs require the low expression of Cx43 for maintaining their malignant phenotype, and upregulation of Cx43 might be a potential strategy for treatment of malignant glioma.


Asunto(s)
Cadherinas/metabolismo , Conexina 43/metabolismo , Glioma/patología , Células Madre Neoplásicas/metabolismo , Adulto , Animales , Cadherinas/genética , Comunicación Celular , Proliferación Celular , Conexina 43/genética , Metilación de ADN , Femenino , Uniones Comunicantes/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Trasplante de Neoplasias , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestructura , Células Tumorales Cultivadas , Vía de Señalización Wnt
17.
World J Clin Cases ; 11(9): 2029-2035, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36998943

RESUMEN

BACKGROUND: The standard treatment for advanced T2 gastric cancer (GC) is laparoscopic or surgical gastrectomy (either partial or total) and D2 lymphadenectomy. A novel combined endoscopic and laparoscopic surgery (NCELS) has recently been proposed as a better option for T2 GC. Here we describe two case studies demonstrating the efficacy and safety of NCELS. CASE SUMMARY: Two T2 GC cases were both resected by endoscopic submucosal dissection and full-thickness resection and laparoscopic lymph nodes dissection. This method has the advantage of being more precise and minimally invasive compared to current methods. The treatment of these 2 patients was safe and effective with no complications. These cases were followed up for nearly 4 years without recurrence or metastasis. CONCLUSION: This novel method provides a minimally invasive treatment option for T2 GC, and its potential indications, effectiveness and safety needs to be further evaluated in controlled studies.

18.
Commun Biol ; 6(1): 105, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707678

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.


Asunto(s)
Lipogénesis , ARN Largo no Codificante , Animales , Ratones , Dieta Alta en Grasa , Regulación hacia Abajo , Gastrectomía , Gluconeogénesis/genética , Lipogénesis/genética , Hígado/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
19.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36963400

RESUMEN

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Asunto(s)
Glioma , Inhibidores de Puntos de Control Inmunológico , Interleucina-8 , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Interleucina-8/metabolismo , Linfocitos T , Microambiente Tumoral
20.
Am J Pathol ; 179(3): 1504-12, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21782780

RESUMEN

Highly malignant human gliomas overexpress the G-protein-coupled chemoattractant receptor formyl peptide receptor (FPR1), which promotes tumor progression when activated. Our previous studies demonstrated that necrotic glioblastoma cells release chemotactic agonist(s) that activate FPR1 on viable tumor cells. In the present study, we identified an FPR1 agonist released by necrotic human glioblastoma cells. Necrotic tumor cell supernatant (NecSup) contained Annexin 1 (Anx A1), a chemotatic polypeptide agonist for FPR1. Immunoabsorption of Anx A1 with a specific antibody markedly reduced the chemotactic activity of NecSup for tumor cells and diminished its capacity to promote tumor cell growth, invasion, and colony formation on soft agar. In addition, Anx A1 was present in tumor xenografts formed by human glioblastoma cells in nude mice. Anx A1 knockdown significantly reduced the tumorigenicity of glioblastoma cells in nude mice, but FPR1/Anx A1 double knockdown diminished tumor growth even further. The clinical relevance of Anx A1 in gliomas was supported by the observation that Anx A1 was more highly expressed in poorly differentiated human primary gliomas compared with lower grade tumors. Our study implicates Anx A1 as a major component in necrotic tumor cell-derived stimulants of the growth of glioblastoma via the activation of FPR1.


Asunto(s)
Anexina A1/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Formil Péptido/agonistas , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Quimiotaxis/fisiología , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Necrosis , Trasplante de Neoplasias , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA