Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7953): 712-719, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922590

RESUMEN

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Metabolismo Energético , Neoplasias Pulmonares , Mitocondrias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/ultraestructura , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/ultraestructura , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Fenotipo , Tomografía de Emisión de Positrones
2.
FASEB J ; 38(10): e23700, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787606

RESUMEN

Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.


Asunto(s)
Aterosclerosis , Espectroscopía Dieléctrica , Animales , Conejos , Espectroscopía Dieléctrica/métodos , Masculino , Aterosclerosis/patología , Aterosclerosis/diagnóstico por imagen , Aorta Abdominal/patología , Aorta Abdominal/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones/métodos , Fenotipo , Modelos Animales de Enfermedad , Macrófagos/patología , Macrófagos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836566

RESUMEN

Unlike other epithelial cancer types, circulating tumor cells (CTCs) are less frequently detected in the peripheral blood of non-small cell lung cancer (NSCLC) patients using epithelial marker-based detection approaches despite the aggressive nature of NSCLC. Here, we demonstrate hexokinase-2 (HK2) as a metabolic function-associated marker for the detection of CTCs. In 59 NSCLC patients bearing cytokeratin-positive (CKpos) primary tumors, HK2 enables resolving cytokeratin-negative (HK2high/CKneg) CTCs as a prevalent population in about half of the peripheral blood samples with positive CTC counts. However, HK2high/CKneg tumor cells are a minority population in pleural effusions and cerebrospinal fluids. Single-cell analysis shows that HK2high/CKneg CTCs exhibit smaller sizes but consistent copy number variation profiles compared with CKpos counterparts. Single-cell transcriptome profiling reveals that CK expression levels of CTCs are independent of their epithelial-to-mesenchymal transition (EMT) status, challenging the long-standing association between CK expression and EMT. HK2high/CKneg CTCs display metastasis and EGFR inhibitor resistance-related molecular signatures and are selectively enriched in patients with EGFRL858R driver oncogene mutation as opposed to EGFR19Del , which is more frequently found in patients with prevalent CKpos CTCs in the blood. Consistently, treatment-naïve patients with a larger number or proportion of HK2high/CKneg CTCs in the blood exhibit poor therapy response and shorter progression-free survival. Collectively, our approach resolves a more complete spectrum of CTCs in NSCLC that can potentially be exploited to identify patient prognosis before therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Hexoquinasa/sangre , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Transición Epitelial-Mesenquimal , Receptores ErbB/genética , Genotipo , Humanos , Queratinas/sangre , Biopsia Líquida , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/enzimología , Pronóstico
4.
Proc Natl Acad Sci U S A ; 116(14): 6842-6847, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894490

RESUMEN

Functional lysosomes mediate autophagy and macropinocytosis for nutrient acquisition. Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit high basal lysosomal activity, and inhibition of lysosome function suppresses PDAC cell proliferation and tumor growth. However, the codependencies induced by lysosomal inhibition in PDAC have not been systematically explored. We performed a comprehensive pharmacological inhibition screen of the protein kinome and found that replication stress response (RSR) inhibitors were synthetically lethal with chloroquine (CQ) in PDAC cells. CQ treatment reduced de novo nucleotide biosynthesis and induced replication stress. We found that CQ treatment caused mitochondrial dysfunction and depletion of aspartate, an essential precursor for de novo nucleotide synthesis, as an underlying mechanism. Supplementation with aspartate partially rescued the phenotypes induced by CQ. The synergy of CQ and the RSR inhibitor VE-822 was comprehensively validated in both 2D and 3D cultures of PDAC cell lines, a heterotypic spheroid culture with cancer-associated fibroblasts, and in vivo xenograft and syngeneic PDAC mouse models. These results indicate a codependency on functional lysosomes and RSR in PDAC and support the translational potential of the combination of CQ and RSR inhibitors.


Asunto(s)
Ácido Aspártico/deficiencia , Carcinoma Ductal Pancreático , Cloroquina/farmacología , Lisosomas/metabolismo , Mitocondrias , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Humanos , Lisosomas/patología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Bioconjug Chem ; 32(9): 2073-2082, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34415731

RESUMEN

Chemically synthesized, small peptides that bind with high affinity and specificity to CD8-expressing (CD8+) tumor-infiltrating T cells, yet retain the desirable characteristics of small molecules, hold valuable potential for diagnostic molecular imaging of immune response. Here, we report the development of 18F-labeled peptides targeting human CD8α with nanomolar affinity via the strain-promoted sydnone-alkyne cycloaddition with 4-[18F]fluorophenyl sydnone. The 18F-sydnone is produced in one step, in high radiochemical yield, and the peptide labeling proceeds rapidly. A hydrophilic chemical linker results in a tracer with favorable pharmacokinetic properties and improved image contrast, as demonstrated by in vivo PET imaging studies.


Asunto(s)
Alquinos , Tomografía de Emisión de Positrones , Animales , Reacción de Cicloadición , Radioisótopos de Flúor
6.
Proc Natl Acad Sci U S A ; 109(40): 16348-53, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988091

RESUMEN

Protein disulfide isomerase (PDI), an endoplasmic reticulum chaperone protein, catalyzes disulfide bond breakage, formation, and rearrangement. The effect of PDI inhibition on ovarian cancer progression is not yet clear, and there is a need for potent, selective, and safe small-molecule inhibitors of PDI. Here, we report a class of propynoic acid carbamoyl methyl amides (PACMAs) that are active against a panel of human ovarian cancer cell lines. Using fluorescent derivatives, 2D gel electrophoresis, and MS, we established that PACMA 31, one of the most active analogs, acts as an irreversible small-molecule inhibitor of PDI, forming a covalent bond with the active site cysteines of PDI. We also showed that PDI activity is essential for the survival and proliferation of human ovarian cancer cells. In vivo, PACMA 31 showed tumor targeting ability and significantly suppressed ovarian tumor growth without causing toxicity to normal tissues. These irreversible small-molecule PDI inhibitors represent an important approach for the development of targeted anticancer agents for ovarian cancer therapy, and they can also serve as useful probes for investigating the biology of PDI-implicated pathways.


Asunto(s)
Dipéptidos/química , Dipéptidos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Tiofenos/química , Tiofenos/farmacología , Alquinos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Cisteína/metabolismo , Dipéptidos/metabolismo , Descubrimiento de Drogas , Electroforesis en Gel Bidimensional , Femenino , Técnicas Histológicas , Humanos , Inmunoprecipitación , Ratones , Ratones Desnudos , Microscopía Fluorescente , Datos de Secuencia Molecular , Estructura Molecular , Propionatos/química , Proteína Disulfuro Isomerasas/genética , Espectrometría de Masas en Tándem , Tiofenos/metabolismo
7.
PLoS One ; 19(3): e0300150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457438

RESUMEN

During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.


Asunto(s)
Hexoquinasa , Ácido Láctico , Humanos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Ácido Láctico/metabolismo , Células HEK293 , Mitocondrias/metabolismo , Piruvatos/metabolismo
8.
Mol Cancer Ther ; 23(6): 890-903, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417138

RESUMEN

Epithelial membrane protein-2 (EMP2) is upregulated in a number of tumors and therefore remains a promising target for mAb-based therapy. In the current study, image-guided therapy for an anti-EMP2 mAb was evaluated by PET in both syngeneic and immunodeficient cancer models expressing different levels of EMP2 to enable a better understanding of its tumor uptake and off target accumulation and clearance. The therapeutic efficacy of the anti-EMP2 mAb was initially evaluated in high- and low-expressing tumors, and the mAb reduced tumor load for the high EMP2-expressing 4T1 and HEC-1-A tumors. To create an imaging agent, the anti-EMP2 mAb was conjugated to p-SCN-Bn-deferoxamine (DFO) and radiolabeled with 89Zr. Tumor targeting and tissue biodistribution were evaluated in syngeneic tumor models (4T1, CT26, and Panc02) and human tumor xenograft models (Ramos, HEC-1-A, and U87MG/EMP2). PET imaging revealed radioactive accumulation in EMP2-positive tumors within 24 hours after injection, and the signal was retained for 5 days. High specific uptake was observed in tumors with high EMP2 expression (4T1, CT26, HEC-1-A, and U87MG/EMP2), with less accumulation in tumors with low EMP2 expression (Panc02 and Ramos). Biodistribution at 5 days after injection revealed that the tumor uptake ranged from 2 to approximately 16%ID/cc. The results show that anti-EMP2 mAbs exhibit EMP2-dependent tumor uptake with low off-target accumulation in preclinical cancer models. The development of improved anti-EMP2 Ab fragments may be useful to track EMP2-positive tumors for subsequent therapeutic interventions.


Asunto(s)
Glicoproteínas de Membrana , Radioisótopos , Circonio , Animales , Humanos , Ratones , Glicoproteínas de Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Femenino , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Distribución Tisular , Anticuerpos Monoclonales , Modelos Animales de Enfermedad
9.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645232

RESUMEN

Adenocarcinomas from multiple tissues can converge to treatment-resistant small cell neuroendocrine (SCN) cancers comprised of ASCL1, POU2F3, NEUROD1, and YAP1 subtypes. We investigated how mitochondrial metabolism influences SCN cancer (SCNC) progression. Extensive bioinformatics analyses encompassing thousands of patient tumors and human cancer cell lines uncovered enhanced expression of PGC-1α, a potent regulator of mitochondrial oxidative phosphorylation (OXPHOS), across several SCNC types. PGC-1α correlated tightly with increased expression of the lineage marker ASCL1 through a positive feedback mechanism. Analyses using a human prostate tissue-based SCN transformation system showed that the ASCL1 subtype has heightened PGC-1α expression and OXPHOS activity. PGC-1α inhibition diminished OXPHOS, reduced SCNC cell proliferation, and blocked SCN prostate tumor formation. PGC-1α overexpression enhanced OXPHOS, tripled the SCN prostate tumor formation rate, and promoted commitment to the ASCL1 lineage. These findings reveal the metabolic heterogeneity among SCNC subtypes and identify PGC-1α-induced OXPHOS as a regulator of SCNC lineage plasticity.

10.
Bioorg Med Chem Lett ; 23(18): 5135-9, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23927972

RESUMEN

The synthesis of several analogues of ma'edamines A and B are reported. The synthesized compounds were tested on hormone receptor positive and HER2 positive breast cancer cell lines, by MTT assay. MED-114, 115, 117, 119, 120, 124, 128 and 131 were found to be equally active as Lapatinib on HER2 +ve cell line SKBR3.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Pirazinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Pirazinas/síntesis química , Pirazinas/química , Relación Estructura-Actividad
11.
PLoS One ; 18(11): e0286660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917627

RESUMEN

Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.


Asunto(s)
Ácido Láctico , Ácido Pirúvico , Humanos , Hexoquinasa/metabolismo , Malatos/metabolismo , Ácido Aspártico/metabolismo , Células HEK293
12.
Chem Sci ; 14(47): 13825-13831, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075671

RESUMEN

Significant evidence suggests that the failure of clinically tested epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (e.g. erlotinib, lapatinib, gefitinib) in glioblastoma (GBM) patients is primarily attributed to insufficient brain penetration, resulting in inadequate exposure to the targeted cells. Molecular imaging tools can facilitate GBM drug development by visualizing drug biodistribution and confirming target expression and localization. To assess brain exposure via PET molecular imaging, we synthesized fluorine-18 isotopologues of two brain-penetrant EGFR tyrosine kinase inhibitors developed specifically for GBM. Adapting our recently reported radiofluorination of N-arylsydnones, we constructed an ortho-disubstituted [18F]fluoroarene as the key intermediate. The radiotracers were produced on an automated synthesis module in 7-8% activity yield with high molar activity. In vivo PET imaging revealed rapid brain uptake in rodents and tumor accumulation in an EGFR-driven orthotopic GBM xenograft model.

13.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786712

RESUMEN

Background: Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies.We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Methods: Male New Zealand White rabbits (n=16) were placed on a high-fat diet for 4 or 8 weeks, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68 Ga-DOTATATE, 18 F-NaF, and 18 F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histological analyses. Analyses were performed blindly. Results: Phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r=0.883 at 1 kHz, P =0.004) and %stenosis (r=0.901 at 0.25 kHz, P =0.002), similar to IVUS. Moreover, impedance was associated with markers of plaque activity including macrophage infiltration (r=0.813 at 10 kHz, P =0.008) and macrophage/smooth muscle cell (SMC) ratio (r=0.813 at 25 kHz, P =0.026). 68 Ga-DOTATATE correlated with intimal macrophage infiltration (r=0.861, P =0.003) and macrophage/SMC ratio (r=0.831, P =0.021), 18 F-NaF with SMC infiltration (r=-0.842, P =0.018), and 18 F-FDG correlated with macrophage/SMC ratio (r=0.787, P =0.036). Conclusions: EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS as a comprehensive modality for evaluation of human coronary artery disease. HIGHLIGHTS: Electrochemical impedance spectroscopy (EIS) characterizes both anatomic features - via phase delay; and inflammatory activity - via impedance profiles, of underlying atherosclerosis.EIS can serve as an integrated, comprehensive metric for atherosclerosis evaluation by capturing morphological and compositional plaque characteristics that otherwise require multiple imaging modalities to obtain.Translation of these findings from animal models to human coronary artery disease may provide an additional strategy to help guide clinical management.

14.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37279645

RESUMEN

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Asunto(s)
Glioblastoma , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Glioblastoma/metabolismo , Antioxidantes , Isoformas de Proteínas , Glucosa/metabolismo , Línea Celular Tumoral
15.
ACS Nano ; 16(4): 6013-6022, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35417654

RESUMEN

Interfacing with the human body, wearable and implantable bioelectronics are a compelling platform technology for healthcare monitoring and medical therapeutics. However, clinical adoption of these devices is largely shadowed by their weakness in humidity resistance, stretchability, durability, and biocompatibility. In this work, we report a self-powered waterproof biomechanical sensor with stretchability up to 440% using the giant magnetoelastic effect in a soft polymer system. By manipulating the magnetic dipole alignment, the sensor achieved a particularly broad sensing range from 3.5 Pa to 2000 kPa, with a response time of ∼3 ms. To validate the excellent performance of the magnetoelastic sensor in biomonitoring, both ex vivo porcine heart testing and in vivo rat model testing were performed for cardiovascular monitoring and heart disease diagnosis. With the obtained sensing data, we have successfully detected ventricular arrhythmia and ventricular fibrillation in the Sprague-Dawley rat model. Holding a collection of compelling features, including minimal hysteresis, ultrawide sensing range, waterproofness, and biocompatibility, the magnetoelastic sensor represents a unique platform technology for self-powered biomonitoring in both wearable and implantable manners.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Porcinos , Ratas , Animales , Monitoreo Biológico , Ratas Sprague-Dawley , Monitoreo Fisiológico , Polímeros
16.
Front Genet ; 13: 904607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035174

RESUMEN

The low-dose mixture hypothesis of carcinogenesis proposes that exposure to an environmental chemical that is not individually oncogenic may nonetheless be capable of enabling carcinogenesis when it acts in concert with other factors. A class of ubiquitous environmental chemicals that are hypothesized to potentially function in this low-dose capacity are synthesized polybrominated diphenyl ethers (PBDEs). PBDEs can affect correlates of carcinogenesis that include genomic instability and inflammation. However, the effect of low-dose PBDE exposure on such correlates in mammary tissue has not been examined. In the present study, low-dose long-term (16 weeks) administration of PBDE to mice modulated transcriptomic indicators of genomic integrity and innate immunity in normal mammary tissue. PBDE increased transcriptome signatures for the Nuclear Factor Erythroid 2 Like 2 (NFE2L2) response to oxidative stress and decreased signatures for non-homologous end joining DNA repair (NHEJ). PBDE also decreased transcriptome signatures for the cyclic GMP-AMP Synthase - Stimulator of Interferon Genes (cGAS-STING) response, decreased indication of Interferon Stimulated Gene Factor 3 (ISGF3) and Nuclear Factor Kappa B (NF-κB) transcription factor activity, and increased digital cytometry estimates of immature dendritic cells (DCs) in mammary tissue. Replication of the PBDE exposure protocol in mice susceptible to mammary carcinogenesis resulted in greater tumor development. The results support the notion that ongoing exposure to low levels of PBDE can disrupt facets of genomic integrity and innate immunity in mammary tissue. Such effects affirm that synthesized PBDEs are a class of environmental chemicals that reasonably fit the low-dose mixture hypothesis.

17.
ACS Appl Mater Interfaces ; 14(33): 37410-37423, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35968684

RESUMEN

Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability. One approach to stabilize insulin is the addition of poly(trehalose methacrylate) (pTrMA) as an excipient. The polymer increases the stability of the peptide to heat and mechanical agitation and has a low viscosity suitable for injection and pumps. However, the safety and stabilizing mechanism of pTrMA is not yet known and is required to understand the potential suitability of pTrMA as an insulin excipient. Herein is reported the immune response, biodistribution, and insulin plasma lifetime in mice, as well as investigation into insulin stabilization. pTrMA alone or formulated with ovalbumin did not elicit an antibody response over 3 weeks in mice, and there was no observable cytokine production in response to pTrMA. Micropositron emission tomography/microcomputer tomography of 64Cu-labeled pTrMA showed excretion of 78-79% ID/cc within 24 h and minimal liver accumulation at 6-8% ID/cc when studied out to 120 h. Further, the plasma lifetime of insulin in mice was not altered by added pTrMA. Formulating insulin with 2 mol equiv of pTrMA improved the stability of insulin to standard storage conditions: 46 weeks at 4 °C yielded 87.0% intact insulin with pTrMA present as compared to 7.8% intact insulin without the polymer. The mechanism by which pTrMA-stabilized insulin was revealed to be a combination of inhibiting deamidation of amino acid residues and preventing fibrillation, followed by aggregation of inactive and immunogenic amyloids all without complexing insulin into its hexameric state, which could delay the onset of insulin activity. Based on the data reported here, we suggest that pTrMA stabilizes insulin as an excipient without adverse effects in vivo and is promising to investigate further for the safe formulation of insulin.


Asunto(s)
Excipientes , Trehalosa , Animales , Estabilidad de Medicamentos , Excipientes/química , Insulina/química , Metacrilatos , Ratones , Polímeros/química , Distribución Tisular , Tomografía Computarizada por Rayos X , Trehalosa/química
18.
Mol Ther Methods Clin Dev ; 25: 278-296, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35505663

RESUMEN

Creatine deficiency disorders are inborn errors of creatine metabolism, an energy homeostasis molecule. One of these, guanidinoacetate N-methyltransferase (GAMT) deficiency, has clinical characteristics that include features of autism, self-mutilation, intellectual disability, and seizures, with approximately 40% having a disorder of movement; failure to thrive can also be a component. Along with low creatine levels, guanidinoacetic acid (GAA) toxicity has been implicated in the pathophysiology of the disorder. Present-day therapy with oral creatine to control GAA lacks efficacy; seizures can persist. Dietary management and pharmacological ornithine treatment are challenging. Using an AAV-based gene therapy approach to express human codon-optimized GAMT in hepatocytes, in situ hybridization, and immunostaining, we demonstrated pan-hepatic GAMT expression. Serial collection of blood demonstrated a marked early and sustained reduction of GAA with normalization of plasma creatine; urinary GAA levels also markedly declined. The terminal time point demonstrated marked improvement in cerebral and myocardial creatine levels. In conjunction with the biochemical findings, treated mice gained weight to nearly match their wild-type littermates, while behavioral studies demonstrated resolution of abnormalities; PET-CT imaging demonstrated improvement in brain metabolism. In conclusion, a gene therapy approach can result in long-term normalization of GAA with increased creatine in guanidinoacetate N-methyltransferase deficiency and at the same time resolves the behavioral phenotype in a murine model of the disorder. These findings have important implications for the development of a new therapy for this abnormality of creatine metabolism.

19.
Methods Mol Biol ; 2126: 177-190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112389

RESUMEN

Positron emission tomography (PET) reporter genes (PRGs), when coupled with positron-emitting PET reporter probes (PRPs), are useful for tracking specific cell populations in cell-based therapies, in transgenic animal models, and in xenograft tumor progression experiments. The activities of incorporated PRGs in targeted cells can be monitored noninvasively by PET imaging in preclinical in vivo studies and clinical applications following systemic administration of the appropriate PRG. Here we describe a method that minimizes both design and variability of vector delivery vehicles for alternative PRGs and biological variability of the in vivo target when comparing the efficacy, sensitivity, and specificity of alternative PRG/PRP combinations for in vivo PRG imaging. The principles described for comparing alternative PRG/PRP reporter gene systems can be applied to comparisons of alternative fluorescence, bioluminescence, single-photon emission computerized tomography (SPECT), and magnetic resonance imaging (MRI) reporter genes.


Asunto(s)
Adenoviridae/genética , Genes Reporteros , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Timidina Quinasa/análisis , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA