Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.522
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34388390

RESUMEN

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Asunto(s)
Crecimiento y Desarrollo , Mosaicismo , Espermatozoides/metabolismo , Adolescente , Envejecimiento/sangre , Alelos , Células Clonales , Estudios de Cohortes , Humanos , Masculino , Modelos Biológicos , Mutación/genética , Factores de Riesgo , Factores de Tiempo , Adulto Joven
2.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633902

RESUMEN

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Asunto(s)
Exosomas/fisiología , Neutrófilos/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Humanos , Inflamación , Integrinas , Elastasa de Leucocito/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , alfa 1-Antitripsina/metabolismo
3.
Cell ; 176(4): 831-843.e22, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735634

RESUMEN

The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for ∼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.


Asunto(s)
Neoplasias de la Próstata/genética , ARN/genética , ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Perfil Genético , Células HEK293 , Humanos , Masculino , MicroARNs/metabolismo , Próstata/metabolismo , Empalme del ARN/genética , ARN Circular , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma
4.
Nature ; 626(7998): 313-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326591

RESUMEN

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

5.
Nature ; 604(7907): 689-696, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444276

RESUMEN

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Asunto(s)
Células Clonales , Mosaicismo , Neocórtex , Linaje de la Célula , Células Cultivadas , Humanos , Microglía , Neocórtex/citología , Neocórtex/crecimiento & desarrollo
6.
J Cell Sci ; 137(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230433

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins that share a common structural topology. When compared with agonist-induced internalization, how GPCRs are sorted and delivered to functional destinations after synthesis in the endoplasmic reticulum (ER) is much less well understood. Here, we demonstrate that depletion of coiled-coil α-helical rod protein 1 (CCHCR1) by siRNA and CRISPR-Cas9 significantly inhibits surface expression and signaling of α2A-adrenergic receptor (α2A-AR; also known as ADRA2A), without affecting α2B-AR. Further studies show that CCHCR1 depletion specifically impedes α2A-AR export from the ER to the Golgi, but not from the Golgi to the surface. We also demonstrate that CCHCR1 selectively interacts with α2A-AR. The interaction is mediated through multiple domains of both proteins and is ionic in nature. Moreover, mutating CCHCR1-binding motifs significantly attenuates ER-to-Golgi export, surface expression and signaling of α2A-AR. Collectively, these data reveal a novel function for CCHCR1 in intracellular protein trafficking, indicate that closely related GPCRs can be sorted into distinct ER-to-Golgi transport routes by CCHCR1 via direct interaction, and provide important insights into segregation and anterograde delivery of nascent GPCR members.


Asunto(s)
Aparato de Golgi , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Transducción de Señal , Retículo Endoplásmico/metabolismo
7.
PLoS Biol ; 21(10): e3002334, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856394

RESUMEN

Tissue development entails genetically programmed differentiation of immature cell types to mature, fully differentiated cells. Exposure during development to non-mutagenic environmental factors can contribute to cancer risk, but the underlying mechanisms are not understood. We used a mouse model of endometrial adenocarcinoma that results from brief developmental exposure to an estrogenic chemical, diethylstilbestrol (DES), to determine causative factors. Single-cell RNA sequencing (scRNAseq) and spatial transcriptomics of adult control uteri revealed novel markers of uterine epithelial stem cells (EpSCs), identified distinct luminal and glandular progenitor cell (PC) populations, and defined glandular and luminal epithelium (LE) cell differentiation trajectories. Neonatal DES exposure disrupted uterine epithelial cell differentiation, resulting in a failure to generate an EpSC population or distinguishable glandular and luminal progenitors or mature cells. Instead, the DES-exposed epithelial cells were characterized by a single proliferating PC population and widespread activation of Wnt/ß-catenin signaling. The underlying endometrial stromal cells had dramatic increases in inflammatory signaling pathways and oxidative stress. Together, these changes activated phosphoinositide 3-kinase/AKT serine-threonine kinase signaling and malignant transformation of cells that were marked by phospho-AKT and the cancer-associated protein olfactomedin 4. Here, we defined a mechanistic pathway from developmental exposure to an endocrine disrupting chemical to the development of adult-onset cancer. These findings provide an explanation for how human cancers, which are often associated with abnormal activation of PI3K/AKT signaling, could result from exposure to environmental insults during development.


Asunto(s)
Adenocarcinoma , Fosfatidilinositol 3-Quinasas , Animales , Femenino , Ratones , Adenocarcinoma/inducido químicamente , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular , Estrógenos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Útero
8.
J Immunol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912837

RESUMEN

We analyzed bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to identify alternative splicing (AS) events and regulatory RNA-binding proteins (RBPs) associated with immune infiltration in human laryngeal squamous cell carcinoma (LSCC). Whole-transcriptome sequencing data of 20 human laryngeal cancer and paracancerous tissues were downloaded from the Gene Expression Omnibus public database, using newly published splicing-site usage variation analysis software to obtain highly conserved regulated AS (RAS) events, and scientific reverse convolution algorithm analysis was used to identify significantly different immune cells and perform a correlation analysis between the two. The software package edgeR was used to identify differentially expressed RBPs and the immune infiltration-related LSCC-RAS they may regulate. Finally, we present the expression profiles and survival curves of 117 human laryngeal cancer samples from The Cancer Genome Atlas dataset for the identified RBPs and LSCC-RAS. We also downloaded the gene set enrichment 150321 scRNA-seq data for two human LSCC tissue samples. The RBP expression pattern and the expression of prophase RBP genes were analyzed in different LSCC cell populations. RNA-binding motif protein 47 (RBM47) and filamin A, as well as the RBP-RAS events that were screened in both the fibulin 2 and fibronectin 1 genes, were all significantly associated with the prognosis, and the RBM47 gene was upregulated in myeloid cells. Because the prognosis was significantly associated with two RBP regulators and two LSCC-RAS events, they may be critical regulators of immune cell survival during laryngeal cancer progression, and RBM47 may regulate macrophage-associated AS and affect immunity.

9.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149922

RESUMEN

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Asunto(s)
Complemento C1s , Vía Clásica del Complemento , Animales , Ovinos , Péptido Hidrolasas , Complemento C1/metabolismo , Endopeptidasas , Piridinas/farmacología
10.
Nature ; 579(7800): 615-619, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214249

RESUMEN

Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health1-4. These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome5. Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5'-viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases6,7. Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.


Asunto(s)
Arenavirus del Nuevo Mundo/enzimología , Microscopía por Crioelectrón , Virus Lassa/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/ultraestructura , Replicación Viral , Apoenzimas/química , Apoenzimas/metabolismo , Apoenzimas/ultraestructura , Arenavirus del Nuevo Mundo/ultraestructura , Dominio Catalítico , Virus Lassa/ultraestructura , Virus de la Coriomeningitis Linfocítica/enzimología , Virus de la Coriomeningitis Linfocítica/ultraestructura , Modelos Moleculares , Regiones Promotoras Genéticas/genética , ARN Polimerasa Dependiente del ARN/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(21): e2301897120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186861

RESUMEN

The peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix. Autoinhibition is relieved at the division site by the activator EnvC, which is in turn regulated by the ATP-binding cassette (ABC) transporter-like complex called FtsEX. EnvC is also known to be autoinhibited by a regulatory helix (RH), but how its activity is modulated by FtsEX and the mechanism by which it activates the amidases have remained unclear. Here, we investigated this regulation by determining the structure of Pseudomonas aeruginosa FtsEX alone with or without bound ATP, in complex with EnvC, and in a FtsEX-EnvC-AmiB supercomplex. In combination with biochemical studies, the structures reveal that ATP binding is likely to activate FtsEX-EnvC and promote its association with AmiB. Furthermore, the AmiB activation mechanism is shown to involve a RH rearrangement. In the activated state of the complex, the inhibitory helix of EnvC is released, freeing it to associate with the RH of AmiB, which liberates its active site for PG cleavage. These regulatory helices are found in many EnvC proteins and amidases throughout gram-negative bacteria, suggesting that the activation mechanism is broadly conserved and a potential target for lysis-inducing antibiotics that misregulate the complex.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Hidrólisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Amidohidrolasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Pared Celular/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Peptidoglicano/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo
12.
EMBO J ; 40(16): e107403, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34223653

RESUMEN

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/antagonistas & inhibidores , Cirrosis Hepática/prevención & control , Fibrosis Pulmonar/prevención & control , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina , Tetracloruro de Carbono , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
13.
Plant Cell ; 34(11): 4409-4427, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36000899

RESUMEN

Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.


Asunto(s)
Ácido Abscísico , Ácido Ascórbico , Sequías , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Estrés Fisiológico , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ácido Ascórbico/biosíntesis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Nat Chem Biol ; 19(6): 687-694, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36646958

RESUMEN

G protein-coupled receptors (GPCRs) selectively activate at least one of the four families of heterotrimeric G proteins, but the mechanism of coupling selectivity remains unclear. Structural studies emphasize structural complementarity of GPCRs and nucleotide-free G proteins, but selectivity is likely to be determined by transient intermediate-state complexes that exist before nucleotide release. Here we study coupling to nucleotide-decoupled G protein variants that can adopt conformations similar to receptor-bound G proteins without releasing nucleotide, and are therefore able to bypass intermediate-state complexes. We find that selectivity is degraded when nucleotide release is not required for GPCR-G protein complex formation, to the extent that most GPCRs interact with most nucleotide-decoupled G proteins. These findings demonstrate the absence of absolute structural incompatibility between noncognate receptor-G protein pairs, and are consistent with the hypothesis that transient intermediate states are partly responsible for coupling selectivity.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Conformación Proteica , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo
15.
EMBO Rep ; 24(9): e56230, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37489617

RESUMEN

Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Antineoplásicos/uso terapéutico , Daño del ADN , Línea Celular Tumoral , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína BRCA1/genética
16.
Cell ; 140(2): 222-34, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141836

RESUMEN

N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extrasynaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292-1304 (NR2B(CT)). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2B(CT) that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca(2+) influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extrasynaptic sites and this interaction acts as a central mediator for stroke damage.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Isquemia Encefálica/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/tratamiento farmacológico , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Muerte Celular , Proteínas Quinasas Asociadas a Muerte Celular , Ratones , Neuronas/citología , Neuronas/metabolismo , Péptidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Nano Lett ; 24(22): 6496-6505, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787288

RESUMEN

Asymmetric surface functionalization of complex nanoparticles to control their directional self-assembly remains a considerable challenge. Here, we demonstrated a conformal DNA design strategy for flexible remodeling of the surface of complex nanoparticles, taking Au nanobipyramids (AuNBPs) as a model. We sheathed one or both tips of AuNBPs into conformal DNA origami with an exceptionally accurate orientation control. Such asymmetrically and symmetrically distributed surface patches possess regioselective, sequence, and site-specific DNA binding capabilities. As a result, we realized a series of prototypical multicomponent "colloidal molecules" made of AuNBPs and Au nanospheres (AuNSs) with defined directionality and number of "bonding valence" as well as 1D and 3D hierarchical assemblies, e.g., inverse core-satellites of AuNBPs and AuNSs, side-by-side and tip-to-tip linear assemblies of AuNBPs, and 3D helical superstructures of AuNBPs with tunable twists. These findings inspire new opportunities for nanoparticle surface engineering and the high-order self-assembly of nanoarchitectures with higher complexity and broadened functionalities.


Asunto(s)
ADN , Oro , Nanopartículas del Metal , Propiedades de Superficie , Oro/química , ADN/química , Nanopartículas del Metal/química , Conformación de Ácido Nucleico
18.
Nano Lett ; 24(10): 3249-3256, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477055

RESUMEN

The synergistic interaction between the isolated metal sites promoted the electrocatalytic activity of the catalysts. However, the structural heterogeneity of the isolated sites makes it challenging to evaluate this effect accurately. In this work, metal-coordinated polyphthalocyanine molecules (Fe-PPc, Co-PPc, FeCo-PPc) with long-range ordered and precise coordination structures are used as a platform to study the synergies of different isolated metal sites in the electrochemical CO2 reduction reaction. The combination means of experimental and theoretical calculation clearly reveal that the coexistence of Fe and Co sites in PPc significantly enhances the conjugation effect of the macrocycle. This enhancement subsequently causes the metal sites to lose more electrons, thereby improving their adsorption of CO2 and facilitating the formation of intermediate *COOH on them. As a result, FeCo-PPc achieves a CO partial current density of about 57.4 mA/cm2 with a high turnover frequency of over 49000 site-1 h-1 at -0.9 V (vs RHE).

19.
J Cell Mol Med ; 28(10): e18399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757920

RESUMEN

Ferroptosis is a distinct mode of cell death, distinguishing itself from typical apoptosis by its reliance on the accumulation of iron ions and lipid peroxides. Cells manifest an imbalance between oxidative stress and antioxidant equilibrium during certain pathological contexts, such as tumours, resulting in oxidative stress. Notably, recent investigations propose that heightened intracellular reactive oxygen species (ROS) due to oxidative stress can heighten cellular susceptibility to ferroptosis inducers or expedite the onset of ferroptosis. Consequently, comprehending role of ROS in the initiation of ferroptosis has significance in elucidating disorders related to oxidative stress. Moreover, an exhaustive exploration into the mechanism and control of ferroptosis might offer novel targets for addressing specific tumour types. Within this context, our review delves into recent fundamental pathways and the molecular foundation of ferroptosis. Four classical ferroptotic molecular pathways are well characterized, namely, glutathione peroxidase 4-centred molecular pathway, nuclear factor erythroid 2-related factor 2 molecular pathway, mitochondrial molecular pathway, and mTOR-dependent autophagy pathway. Furthermore, we seek to elucidate the regulatory contributions enacted by ROS. Additionally, we provide an overview of targeted medications targeting four molecular pathways implicated in ferroptosis and their potential clinical applications. Here, we review the role of ROS and oxidative stress in ferroptosis, and we discuss opportunities to use ferroptosis as a new strategy for cancer therapy and point out the current challenges persisting within the domain of ROS-regulated anticancer drug research and development.


Asunto(s)
Ferroptosis , Neoplasias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Ferroptosis/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Transducción de Señal , Autofagia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Mitocondrias/metabolismo
20.
J Am Chem Soc ; 146(2): 1619-1626, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166387

RESUMEN

Operation of rechargeable batteries at ultralow temperature is a significant practical problem because of poor kinetics of the electrode. Here, we report for the first time stabilized multiphase conversions for fast kinetics and long-term durability in ultralow-temperature, organic-sodium batteries. We establish that disodium rhodizonate organic electrode in conjunction with single-layer graphene oxide obviates consumption of organic radical intermediates, and demonstrate as a result that the newly designed organic electrode exhibits excellent electrochemical performance of a highly significant capacity of 130 mAh g-1 at -50 °C. We evidence that the full-cell configuration coupled with Prussian blue analogues exhibits exceptional cycling stability of >7000 cycles at -40 °C while maintaining a discharge capacity of 101 mAh g-1 at a high current density 300 mA g-1. We show this is among the best reported ultralow-temperature performance for nonaqueous batteries, and importantly, the pouch cell exhibits a continuous power supply despite conditions of -50 °C. This work sheds light on the distinct energy storage characteristics of organic electrode and opens up new avenues for the development of reliable and sustainable ultralow-temperature batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA