Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.058
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
2.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
3.
Cell ; 184(2): 404-421.e16, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357445

RESUMEN

Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Células Mieloides/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Fenotipo , RNA-Seq , Microambiente Tumoral
4.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545087

RESUMEN

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Peces/genética , Secuenciación Completa del Genoma , Aletas de Animales/anatomía & histología , Aletas de Animales/fisiología , Animales , Extremidades/anatomía & histología , Extremidades/fisiología , Peces/anatomía & histología , Peces/clasificación , Peces/fisiología , Filogenia , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/anatomía & histología , Vertebrados/genética
5.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730849

RESUMEN

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Streptophyta/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Dominios Proteicos , Streptophyta/clasificación , Simbiosis/genética , Sintenía/genética
6.
Cell ; 175(2): 347-359.e14, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290141

RESUMEN

We analyze whole-genome sequencing data from 141,431 Chinese women generated for non-invasive prenatal testing (NIPT). We use these data to characterize the population genetic structure and to investigate genetic associations with maternal and infectious traits. We show that the present day distribution of alleles is a function of both ancient migration and very recent population movements. We reveal novel phenotype-genotype associations, including several replicated associations with height and BMI, an association between maternal age and EMB, and between twin pregnancy and NRG1. Finally, we identify a unique pattern of circulating viral DNA in plasma with high prevalence of hepatitis B and other clinically relevant maternal infections. A GWAS for viral infections identifies an exceptionally strong association between integrated herpesvirus 6 and MOV10L1, which affects piwi-interacting RNA (piRNA) processing and PIWI protein function. These findings demonstrate the great value and potential of accumulating NIPT data for worldwide medical and genetic analyses.


Asunto(s)
Pueblo Asiatico/genética , Diagnóstico Prenatal/métodos , Adulto , Alelos , China , ADN/genética , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Migración Humana , Humanos , Embarazo , Análisis de Secuencia de ADN
7.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728666

RESUMEN

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cruzamiento , Proteínas y Péptidos de Choque por Frío/genética , Frío , Retículo Endoplásmico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Oryza/citología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
8.
Nature ; 629(8010): 154-164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649488

RESUMEN

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Asunto(s)
Envejecimiento , Músculo Esquelético , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Fragilidad/genética , Fragilidad/patología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/patología , Transcriptoma
9.
Immunity ; 53(3): 685-696.e3, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32783921

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.


Asunto(s)
Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Gripe Humana/inmunología , Leucocitos Mononucleares/inmunología , Neumonía Viral/inmunología , Transducción de Señal/inmunología , Betacoronavirus/inmunología , COVID-19 , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pandemias , SARS-CoV-2
10.
Nature ; 605(7909): 315-324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314832

RESUMEN

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Pluripotentes , Cigoto , Humanos , Proteínas Cromosómicas no Histona/genética , Embrión de Mamíferos/citología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Cigoto/citología
11.
Nat Methods ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907114

RESUMEN

Advances in spatial omics technologies now allow multiple types of data to be acquired from the same tissue slice. To realize the full potential of such data, we need spatially informed methods for data integration. Here, we introduce SpatialGlue, a graph neural network model with a dual-attention mechanism that deciphers spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrated SpatialGlue on data acquired from different tissue types using different technologies, including spatial epigenome-transcriptome and transcriptome-proteome modalities. Compared to other methods, SpatialGlue captured more anatomical details and more accurately resolved spatial domains such as the cortex layers of the brain. Our method also identified cell types like spleen macrophage subsets located at three different zones that were not available in the original data annotations. SpatialGlue scales well with data size and can be used to integrate three modalities. Our spatial multi-omics analysis tool combines the information from complementary omics modalities to obtain a holistic view of cellular and tissue properties.

12.
Cell ; 148(5): 873-85, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385957

RESUMEN

Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.


Asunto(s)
Evolución Clonal , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Análisis de la Célula Individual/métodos , Trombocitemia Esencial/genética , Exoma , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Mutación
13.
Cell ; 148(5): 886-95, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385958

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Análisis de la Célula Individual/métodos , Proteínas de Unión al ADN , Exoma , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Filogenia , Proyectos Piloto , Análisis de Componente Principal , Factores de Transcripción/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
14.
Nucleic Acids Res ; 52(D1): D1053-D1061, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953328

RESUMEN

Recent technological developments in spatial transcriptomics allow researchers to measure gene expression of cells and their spatial locations at the single-cell level, generating detailed biological insight into biological processes. A comprehensive database could facilitate the sharing of spatial transcriptomic data and streamline the data acquisition process for researchers. Here, we present the Spatial TranscriptOmics DataBase (STOmicsDB), a database that serves as a one-stop hub for spatial transcriptomics. STOmicsDB integrates 218 manually curated datasets representing 17 species. We annotated cell types, identified spatial regions and genes, and performed cell-cell interaction analysis for these datasets. STOmicsDB features a user-friendly interface for the rapid visualization of millions of cells. To further facilitate the reusability and interoperability of spatial transcriptomic data, we developed standards for spatial transcriptomic data archiving and constructed a spatial transcriptomic data archiving system. Additionally, we offer a distinctive capability of customizing dedicated sub-databases in STOmicsDB for researchers, assisting them in visualizing their spatial transcriptomic analyses. We believe that STOmicsDB could contribute to research insights in the spatial transcriptomics field, including data archiving, sharing, visualization and analysis. STOmicsDB is freely accessible at https://db.cngb.org/stomics/.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Transcriptoma , Difusión de la Información
15.
Proc Natl Acad Sci U S A ; 120(38): e2310163120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37703282

RESUMEN

Callus is a reprogrammed cell mass involved in plant regeneration and gene transformation in crop engineering. Pluripotent callus cells develop into fertile shoots through shoot regeneration. The molecular basis of the shoot regeneration process in crop callus remains largely elusive. This study pioneers the exploration of the spatial transcriptome of tomato callus during shoot regeneration. The findings reveal the presence of highly heterogeneous cell populations within the callus, including epidermis, vascular tissue, shoot primordia, inner callus, and outgrowth shoots. By characterizing the spatially resolved molecular features of shoot primordia and surrounding cells, specific factors essential for shoot primordia formation are identified. Notably, chlorenchyma cells, enriched in photosynthesis-related processes, play a crucial role in promoting shoot primordia formation and subsequent shoot regeneration. Light is shown to promote shoot regeneration by inducing chlorenchyma cell development and coordinating sugar signaling. These findings significantly advance our understanding of the cellular and molecular aspects of shoot regeneration in tomato callus and demonstrate the immense potential of spatial transcriptomics in plant biology.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma , Células Epiteliales , Perfilación de la Expresión Génica , Regeneración/genética
16.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768215

RESUMEN

High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.


Asunto(s)
Genoma de Planta , Selección Genética , Adaptación Fisiológica/genética , Altitud
17.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
18.
Nucleic Acids Res ; 51(21): 11770-11782, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870428

RESUMEN

Precision medicine depends on high-accuracy individual-level genotype data. However, the whole-genome sequencing (WGS) is still not suitable for gigantic studies due to budget constraints. It is particularly important to construct highly accurate haplotype reference panel for genotype imputation. In this study, we used 10 000 samples with medium-depth WGS to construct a reference panel that we named the CKB reference panel. By imputing microarray datasets, it showed that the CKB panel outperformed compared panels in terms of both the number of well-imputed variants and imputation accuracy. In addition, we have completed the imputation of 100 706 microarrays with the CKB panel, and the after-imputed data is the hitherto largest whole genome data of the Chinese population. Furthermore, in the GWAS analysis of real phenotype height, the number of tested SNPs tripled and the number of significant SNPs doubled after imputation. Finally, we developed an online server for offering free genotype imputation service based on the CKB reference panel (https://db.cngb.org/imputation/). We believe that the CKB panel is of great value for imputing microarray or low-coverage genotype data of Chinese population, and potentially mixed populations. The imputation-completed 100 706 microarray data are enormous and precious resources of population genetic studies for complex traits and diseases.


Asunto(s)
Bancos de Muestras Biológicas , Genoma , Humanos , Haplotipos , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , China
19.
J Am Chem Soc ; 146(23): 16222-16228, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38778012

RESUMEN

The crystal structure of a material is essentially determined by the nature of its chemical bonding. Consequently, the atomic coordination intimately correlates with the degree of ionicity or covalency of the material. Based on this principle, materials with similar chemical compositions can be successfully categorized into different coordination groups. However, counterexamples have recently emerged in complex ternary compounds. For instance, covalent IB-IIIA-VIA2 compounds, such as AgInS2, prefer a tetrahedrally coordinated structure (TCS), while ionic IA-VA-VIA2 compounds, such as NaBiS2, would favor an octahedrally coordinated structure (OCS). One naturally expects that IB-VA-VIA2 compounds with intermediate ionicity or covalency, such as AgBiS2, should then have a mix-coordinated structure (MCS) consisting of covalent AgS4 tetrahedra and ionic BiS6 octahedra. Surprisingly, only the experimental presence of the OCS was observed for AgBiS2. To resolve this puzzle, we perform first-principles studies of the phase stabilities of ternary compounds at finite temperatures. We find that AgBiS2 indeed prefers MCS at the ground state, in agreement with the typical expectation, but under experimental synthesis conditions, disordered OCS becomes energetically more favorable because of its low mixing energy and high configurational entropy. Our work elucidates the critical role of configurational disorder in stabilizing chemically unfavorable coordination, providing a rigorous rationale for the anomalous coordination preference in IB-VA-VIA2 compounds.

20.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670931

RESUMEN

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA