Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270036

RESUMEN

Seedling drought stress is one of the most important constraints affecting soybean yield and quality. To unravel the molecular mechanisms under soybean drought tolerance, we conducted comprehensive comparative transcriptome analyses of drought-tolerant genotype Jindou 21 (JD) and drought-sensitive genotype Tianlong No.1 (N1) seedlings that had been exposed to drought treatment. A total of 6038 and 4112 differentially expressed genes (DEGs) were identified in drought-tolerant JD and drought-sensitive N1, respectively. Subsequent KEGG pathway analyses showed that numerous DEGs in JD are predominately involved in signal transduction pathways, including plant hormone signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, JA and BR plant hormone signal transduction pathways were found specifically participating in drought-tolerant JD. Meanwhile, the differentially expressed CPKs, CIPKs, MAPKs, and MAP3Ks of calcium and MAPK signaling pathway were only identified in JD. The number of DEGs involved in transcription factors (TFs) is larger in JD than that of in N1. Moreover, some differently expressed transcriptional factor genes were only identified in drought-tolerant JD, including FAR1, RAV, LSD1, EIL, and HB-PHD. In addition, this study suggested that JD could respond to drought stress by regulating the cell wall remodeling and stress-related protein genes such as EXPs, CALSs, CBPs, BBXs, and RD22s. JD is more drought tolerant than N1 owing to more DEGs being involved in multiple signal transduction pathways (JA, BR, calcium, MAPK signaling pathway), stress-related TFs, and proteins. The above valuable genes and pathways will deepen the understanding of the molecular mechanisms under drought stress in soybean.


Asunto(s)
Sequías , Plantones , Calcio/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estrés Fisiológico/genética , Transcriptoma
2.
Plant Sci ; 349: 112247, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313002

RESUMEN

Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is one of the most destructive diseases to affect soybean (Glycine max (L.) Merr) production. GmSRC2 that encodes a C2 domain-containing protein can respond to various stresses, however, the molecular mechanism of GmSRC2 in resistance of soybean to P. sojae is yet to be fully elucidated. In this study, GmSRC2 was found to be significantly up-regulated under P. sojae treatment; GmSRC2-overexpression (OE) transgenic lines and GmSRC2-silencing transient plants were generated via Agrobacterium tumefaciens mediated transformation and virus-induced gene silencing (VIGS) system, respectively. Infected leaves and cotyledons of OE-GmSRC2-1 and OE-GmSRC2-2 lines showed significant decreases in the disease symptoms and P. sojae biomass than those of wild type (WT); the activities of superoxide dismutase (SOD) and peroxidase (POD) confirmed the accumulation of reactive oxygen species (ROS) in overexpressed transgenic lines. Whereas, silencing of GmSRC2 severely increased the disease symptoms and the biomass of P. sojae. Further, we confirmed that GmSRC2 interacted with the effector PsAvh23 of P. sojae, and the C2 domain was crucial for the interaction. Overexpression of GmSRC2 upregulated the ADA2/GCN5 module upon P. sojae. The aforementioned results demonstrated that GmSRC2 played vital roles in regulating soybean resistance to oomycetes.

3.
Front Plant Sci ; 13: 848766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419020

RESUMEN

Drought is a major environmental constraint that causes substantial reductions in plant growth and yield. Expression of stress-related genes is largely regulated by transcription factors (TFs), including in soybean [Glycine max (L.) Merr.]. In this study, 301 GmAP2/ERF genes that encode TFs were identified in the soybean genome. The TFs were divided into five categories according to their homology. Results of previous studies were then used to select the target gene GmAP2/ERF144 from among those up-regulated by drought and salt stress in the transcriptome. According to respective tissue expression analysis and subcellular determination, the gene was highly expressed in leaves and encoded a nuclear-localized protein. To validate the function of GmAP2/ERF144, the gene was overexpressed in soybean using Agrobacterium-mediated transformation. Compared with wild-type soybean, drought resistance of overexpression lines increased significantly. Under drought treatment, leaf relative water content was significantly higher in overexpressed lines than in the wild-type genotype, whereas malondialdehyde content and electrical conductivity were significantly lower than those in the wild type. Thus, drought resistance of transgenic soybean increased with overexpression of GmAP2/ERF144. To understand overall function of the gene, network analysis was used to predict the genes that interacted with GmAP2/ERF144. Reverse-transcription quantitative PCR showed that expression of those interacting genes in two transgenic lines was 3 to 30 times higher than that in the wild type. Therefore, GmAP2/ERF144 likely interacted with those genes; however, that conclusion needs to be verified in further specific experiments.

4.
Plant Sci ; 285: 26-33, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203891

RESUMEN

Heat shock protein 90 s (Hsp90s), one of the most conserved and abundant molecular chaperones, is an essential component of the protective stress response. A previous study reported at least 12 genes in the GmHsp90s family in soybean and that GmHsp90A2 overexpression enhanced thermotolerance in Arabidopsis thaliana. Here, we investigate the roles of GmHsp90A2 in soybean by utilizing stable transgenic soybean lines overexpressing GmHsp90A2 and mutant lines generated by the CRISPR/Cas9 system. The results showed that compared with wild-type plants (WT) and empty vector control plants (VC), T3 transgenic soybean plants overexpressing GmHsp90A2 exhibited increased tolerance to heat stress through higher chlorophyll and lower malondialdehyde (MDA) contents in plants. Conversely, reduced chlorophyll and increased MDA contents in T2 homozygous GmHsp90A2-knockout mutants indicated decreased tolerance to heat stress. GmHsp90A2 was found to interact with GmHsp90A1 in yeast two-hybrid assays. Furthermore, subcellular localization analyses revealed that GmHsp90A2 was localized to the cytoplasm and cell membrane; as shown by bimolecular fluorescence complementation (BiFC) assays, GmHsp90A2 interacted with GmHsp90A1 in the nucleus and cytoplasm and cell membrane. Hence, we conclude that GmHsp90A1 is able to bind to GmHsp90A2 to form a complex and that this complex enters the nucleus. In summary, GmHsp90A2 might respond to heat stress and positively regulate thermotolerance by interacting with GmHsp90A1.


Asunto(s)
Glycine max/metabolismo , Proteínas de Choque Térmico/fisiología , Proteínas de Plantas/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Clorofila/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Glycine max/fisiología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA