Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33127815

RESUMEN

Gluconobacter oxydans has the unique property of a glucose oxidation system in the periplasmic space, where glucose is oxidized incompletely to ketogluconic acids in a nicotinamide cofactor-independent manner. Elimination of the gdhM gene for membrane-bound glucose dehydrogenase, the first enzyme for the periplasmic glucose oxidation system, induces a metabolic change whereby glucose is oxidized in the cytoplasm to acetic acid. G. oxydans strain NBRC3293 possesses two molecular species of type II NADH dehydrogenase (NDH), the primary and auxiliary NDHs that oxidize NAD(P)H by reducing ubiquinone in the cell membrane. The substrate specificities of the two NDHs are different from each other: primary NDH (p-NDH) oxidizes NADH specifically but auxiliary NDH (a-NDH) oxidizes both NADH and NADPH. We constructed G. oxydans NBRC3293 derivatives defective in the ndhA gene for a-NDH, in the gdhM gene, and in both. Our ΔgdhM derivative yielded higher cell biomass on glucose, as reported previously, but grew at a lower rate than the wild-type strain. The ΔndhA derivative showed growth behavior on glucose similar to that of the wild type. The ΔgdhM ΔndhA double mutant showed greatly delayed growth on glucose, but its cell biomass was similar to that of the ΔgdhM strain. The double mutant accumulated intracellular levels of NAD(P)H and thus shifted the redox balance to reduction. Accumulated NAD(P)H levels might repress growth on glucose by limiting oxidative metabolisms in the cytoplasm. We suggest that a-NDH plays a crucial role in redox homeostasis of nicotinamide cofactors in the absence of the periplasmic oxidation system in G. oxydansIMPORTANCE Nicotinamide cofactors NAD+ and NADP+ mediate redox reactions in metabolism. Gluconobacter oxydans, a member of the acetic acid bacteria, oxidizes glucose incompletely in the periplasmic space-outside the cell. This incomplete oxidation of glucose is independent of nicotinamide cofactors. However, if the periplasmic oxidation of glucose is abolished, the cells oxidize glucose in the cytoplasm by reducing nicotinamide cofactors. Reduced forms of nicotinamide cofactors are reoxidized by NADH dehydrogenase (NDH) on the cell membrane. We found that two kinds of NDH in G. oxydans have different substrate specificities: the primary enzyme is NADH specific, and the auxiliary one oxidizes both NADH and NADPH. Inactivation of the latter enzyme in G. oxydans cells in which we had induced cytoplasmic glucose oxidation resulted in elevated intracellular levels of NAD(P)H, limiting cell growth on glucose. We suggest that the auxiliary enzyme is important if G. oxydans grows independently of the periplasmic oxidation system.


Asunto(s)
Gluconobacter oxydans/enzimología , NADH Deshidrogenasa/metabolismo , NADP/metabolismo , NAD/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Homeostasis , Niacinamida/metabolismo , Oxidación-Reducción , Periplasma/metabolismo
2.
Am J Physiol Cell Physiol ; 316(3): C377-C392, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566391

RESUMEN

Activated coagulation factor XI (FXIa) is a serine proteinase that plays a key role in the intrinsic coagulation pathway. The analysis of FXI-knockout mice has indicated the contribution of FXI to the pathogenesis of atherosclerosis. However, the underlying mechanism remains unknown. We hypothesized that FXIa exerts vascular smooth muscle effects via proteinase-activated receptor 1 (PAR1). Fura-2 fluorometry revealed that FXIa elicited intracellular Ca2+ signal in rat embryo aorta smooth muscle A7r5 cells. The influx of extracellular Ca2+ played a greater role in generating Ca2+ signal than the Ca2+ release from intracellular stores. The FXIa-induced Ca2+ signal was abolished by the pretreatment with atopaxar, an antagonist of PAR1, or 4-amidinophenylmethanesulfonyl fluoride (p-APMSF), an inhibitor of proteinase, while it was also lost in embryonic fibroblasts derived from PAR1-/- mice. FXIa cleaved the recombinant protein containing the extracellular region of PAR1 at the same site (R45/S46) as that of thrombin, a canonical PAR1 agonist. The FXIa-induced Ca2+ influx was inhibited by diltiazem, an L-type Ca2+ channel blocker, and by siRNA targeted to CaV1.2. The FXIa-induced Ca2+ influx was also inhibited by GF109203X and rottlerin, inhibitors of protein kinase C. In a wound healing assay, FXIa increased the rate of cell migration by 2.46-fold of control, which was partly inhibited by atopaxar or diltiazem. In conclusion, FXIa mainly elicits the Ca2+ signal via the PAR1/CaV1.2-mediated Ca2+ influx and accelerates the migration in vascular smooth muscle cells. The present study provides the first evidence that FXIa exerts a direct cellular effect on vascular smooth muscle.


Asunto(s)
Calcio/metabolismo , Movimiento Celular/fisiología , Factor XIa/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Coagulación Sanguínea/fisiología , Canales de Calcio Tipo L/metabolismo , Línea Celular , Femenino , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Wistar , Trombina/metabolismo
3.
Biogerontology ; 18(1): 55-68, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27734200

RESUMEN

Deterioration of adipocyte function due to increased oxidative stress predisposes patients to metabolic disorders in advanced age. However, the roles of tumor suppressors in such conditions remain largely unknown. Therefore, we aimed to address their dynamics in aged adipocytes using a long-term culture model. We compared 3T3-L1 adipocytes at 17-19 days (long-term) with those at 8-10 days (short-term) after initiation of adipogenic induction for mimicking 'aged' and 'young' adipocytes, respectively. H2O2 release and dihydroethidium (DHE) staining was increased, while superoxide dismutase (SOD) activity was reduced in long-term cultured adipocytes, which is suggestive of enhanced oxidative stress in this group. Moreover, qRT-PCR revealed increased mRNAs of Nox4 (a subunit of NADPH oxidase complex), Ccl2 (a proinflammatory chemokine) and Il6 [a marker of senescence-associated secretory phenotype (SASP)] along with decreased levels of Pparγ, Adipoq and Slc2a4 (genes related to glucose metabolism). These alterations were associated with increased expression of the tumor suppressors alternate-reading-frame protein p19Arf (Arf) and p16Ink4a. However, silencing of Arf reduced mRNAs of Adipoq and Slc2a4 and enhanced release of Il6. The effect was opposite in Arf overexpressing adipocytes, which showed reduced superoxide production as assessed with DHE staining and SOD activity. Western blots showed that Arf negatively regulates the phosphorylation of Akt. Luciferase assay in Hela cells additionally suggested that Arf negatively regulates Il6 transcriptional activity through a PI3 K/Akt mediated pathway. These findings strongly suggest that the enhanced Arf expression in oxidative stress plays compensatory protective roles against aging-related dysregulation of gene expression in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Envejecimiento/metabolismo , Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Células 3T3-L1 , Animales , Células HeLa , Humanos , Ratones , Regulación hacia Arriba/fisiología
4.
Proc Natl Acad Sci U S A ; 109(38): 15247-52, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949654

RESUMEN

Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.


Asunto(s)
Complejo I de Transporte de Electrón/química , Lípidos/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X/métodos , Citoplasma/metabolismo , Dimerización , Electrones , Escherichia coli/metabolismo , Conformación Molecular , Mutación , Estructura Terciaria de Proteína , Protones , Quinonas/química , Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Agua/química
5.
Cell Mol Gastroenterol Hepatol ; 18(1): 105-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614455

RESUMEN

BACKGROUND & AIMS: Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS: A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS: AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The ß-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota ß-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS: PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.


Asunto(s)
Azoximetano , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Receptor PAR-1 , Animales , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inhibidores , Humanos , Ratones , Células CACO-2 , Sulfato de Dextran/toxicidad , Azoximetano/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Colitis/complicaciones , Colitis/inducido químicamente , Colitis/patología , Colitis/tratamiento farmacológico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Factor de Transcripción STAT3/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/efectos de los fármacos , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/inmunología , Trombina/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Crohn/patología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/inducido químicamente
6.
J Biol Chem ; 286(11): 9287-97, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21220430

RESUMEN

The flavoprotein rotenone-insensitive internal NADH-ubiquinone (UQ) oxidoreductase (Ndi1) is a member of the respiratory chain in Saccharomyces cerevisiae. We reported previously that bound UQ in Ndi1 plays a key role in preventing the generation of reactive oxygen species. Here, to elucidate this mechanism, we investigated biochemical properties of Ndi1 and its mutants in which highly conserved amino acid residues (presumably involved in NADH and/or UQ binding sites) were replaced. We found that wild-type Ndi1 formed a stable charge transfer (CT) complex (around 740 nm) with NADH, but not with NADPH, under anaerobic conditions. The intensity of the CT absorption band was significantly increased by the presence of bound UQ or externally added n-decylbenzoquinone. Interestingly, however, when Ndi1 was exposed to air, the CT band transiently reached the same maximum level regardless of the presence of UQ. This suggests that Ndi1 forms a ternary complex with NADH and UQ, but the role of UQ in withdrawing an electron can be substitutable with oxygen. Proteinase K digestion analysis showed that NADH (but not NADPH) binding induces conformational changes in Ndi1. The kinetic study of wild-type and mutant Ndi1 indicated that there is no overlap between NADH and UQ binding sites. Moreover, we found that the bound UQ can reversibly dissociate from Ndi1 and is thus replaceable with other quinones in the membrane. Taken together, unlike other NAD(P)H-UQ oxidoreductases, the Ndi1 reaction proceeds through a ternary complex (not a ping-pong) mechanism. The bound UQ keeps oxygen away from the reduced flavin.


Asunto(s)
Complejo I de Transporte de Electrón/química , NAD/química , Oxígeno/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Ubiquinona/química , Anaerobiosis/fisiología , Sitios de Unión , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Cinética , Mutación , NAD/genética , NAD/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(31): 12986-91, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19620712

RESUMEN

Hepatitis E virus (HEV) is a causative agent of acute hepatitis. The crystal structure of HEV-like particles (HEV-LP) consisting of capsid protein was determined at 3.5-A resolution. The capsid protein exhibited a quite different folding at the protruding and middle domains from the members of the families of Caliciviridae and Tombusviridae, while the shell domain shared the common folding. Tyr-288 at the 5-fold axis plays key roles in the assembly of HEV-LP, and aromatic amino acid residues are well conserved among the structurally related viruses. Mutational analyses indicated that the protruding domain is involved in the binding to the cells susceptive to HEV infection and has some neutralization epitopes. These structural and biological findings are important for understanding the molecular mechanisms of assembly and entry of HEV and also provide clues in the development of preventive and prophylactic measures for hepatitis E.


Asunto(s)
Proteínas de la Cápside/química , Virus de la Hepatitis E/química , Virión/química , Animales , Proteínas de la Cápside/inmunología , Línea Celular , Cristalización , Dimerización , Mapeo Epitopo , Genotipo , Virus de la Hepatitis E/inmunología , Estructura Secundaria de Proteína , Spodoptera , Virión/inmunología , Ensamble de Virus
8.
J Neuroendovasc Ther ; 16(6): 301-306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37501891

RESUMEN

Objective: We report a rare case of a patient with a ruptured posterior communicating artery (P-com A) dissecting aneurysm and chronic kidney disease (CKD) treated by endovascular embolization using a small amount of contrast medium. Case Presentation: An 88-year-old female patient had sudden onset of headache and vomit due to subarachnoid hemorrhage. MRI revealed a ruptured dissecting aneurysm of the right P-com A. The patient had CKD of severity grade 4. Endovascular treatment was performed using only 10 mL of diluted contrast medium with injection through a microcatheter. The postoperative course was uneventful, and no deterioration of renal function occurred. Conclusion: With minimal amount of contrast medium, endovascular treatment could be safely and effectively performed for patients with P-com A dissecting aneurysms and severe CKD.

9.
Nutrients ; 14(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277009

RESUMEN

Lactulose, a galactose-fructose disaccharide, is made from the milk sugar lactose by heating or isomerization processes. Lactulose is proposed to modulate gut microbiota and thus expected to be beneficial in treating inflammatory bowel disease. In the present study, we investigated the therapeutic effect of lactulose on gastrointestinal inflammation and inflammation-related tumorigenesis in a mouse model of colorectal cancer as well as its effect on gut microbiota composition. Azoxymethane (AOM)/dextran sulfate sodium (DSS) model was used in this study. Lactulose treatment was performed by feeding 2% lactulose for 14 weeks. Stool samples collected at 4 time points were used for metagenomic analysis of the microbiota. Pathological analysis was performed 21 weeks after AOM injection. AOM/DSS increased the macrophage counts, inflammatory cytokine expression, colorectal tumorigenesis, and imbalance in gut microbiota composition, as evidenced by increased pathogen abundance (e.g., Escherichia and Clostridium). Lactulose significantly inhibited the inflammatory events, and ameliorated inflammation and tumorigenesis. The composition of the intestinal microbiota was also restored upon lactulose treatment, and lactulose reduced pathogen abundance and increased the abundance of Muribaculum and Lachnospiraceae. Meanwhile, the pathways related to Crohn's disease were downregulated after lactulose treatment. Our findings suggest that lactulose restores the structure and composition of the intestinal microbiota, mitigates inflammation, and suppresses inflammatory tumorigenesis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Carcinogénesis , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran/farmacología , Lactulosa/farmacología , Ratones
10.
J Neurosurg Case Lessons ; 1(9): CASE20142, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854709

RESUMEN

BACKGROUND: Idiopathic dissecting cerebral aneurysms (IDCAs) are male dominant but are extremely rare in children. Many IDCAs in children are located in the posterior cerebral artery and the supraclinoid internal cervical artery. No cases of IDCA of the distal anterior cerebral artery (ACA) have been reported. OBSERVATIONS: A previously healthy 7-month-old boy experienced afebrile seizures and presented at the authors' hospital 1 week after the first seizure. He was not feeling well but had no neurological deficits. The authors diagnosed a ruptured aneurysm of the right distal ACA based on imaging results. He underwent emergency craniotomy to prevent re-rupture of the aneurysm. Using intraoperative indocyanine green videoangiography, the authors confirmed peripheral blood flow and then performed aneurysmectomy. Pathological examination of the aneurysm revealed a thickened intima, fragmentation of the internal elastic lamina, and a hematoma in the aneurysmal wall. The authors ultimately diagnosed IDCA because no cause was indicated, including a history of trauma. The boy recovered after surgery and was subsequently discharged with no complications. LESSONS: The authors reported, for the first time, IDCA of the distal ACA in an infant. The trapping technique is often used for giant fusiform aneurysms in infants. Indocyanine green videoangiography is useful for evaluating peripheral blood flow during trapping in this case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA