RESUMEN
Plant phenolics are crucial defense phytochemicals against herbivores and glutathione S-transferase (GST) and carboxylesterase (CarE) in herbivorous insects are well-known detoxification enzymes for such xenobiotics. To understand relationship between a plant phenolic and herbivore GST or CarE genes, we evaluated the relationship between a rice phenolic ferulic acid and resistance to brown planthopper (BPH, Nilaparvata lugens), and investigated the interaction of ferulic acid with GST or CarE genes in BPH. The results indicate that ferulic acid content in tested rice varieties was highly associated with resistance to BPH. Bioassays using artificial diets show that the phenolic acid toxicity to BPH was dose dependent and the LC25 and LC50 were 5.81 and 23.30 µg/ml at 72 hr, respectively. Activities of the enzymes BPH GST and CarE were increased at concentrations below the LC50 of ferulic acid. Moreover, low ferulic acid concentrations (< LC25) upregulated the transcriptional levels of NlGSTD1 and NlGSTE1 of the GST family and NlCE of the CarE family. By using dsRNA-induced gene silencing (DIGS) of GST or CarE, it was shown that suppressed expression levels of NlGSTD1, NlGSTE1 and NlCE were 14.6%-21.2%, 27.8%-34.2%, and 10.5%-19.8%, respectively. Combination of NlGSTD1, NlGSTE1 or NlCE knockdown with ferulic acid increased nymph mortality by 92.9%, 119.9%, or 124.6%, respectively. These results suggest that depletion of detoxification genes in herbivorous insects by plant-mediated RNAi technology might be a new potential resource for improving rice resistance to BPH.
Asunto(s)
Carboxilesterasa/genética , Ácidos Cumáricos/metabolismo , Glutatión Transferasa/metabolismo , Hemípteros/enzimología , Hemípteros/fisiología , Herbivoria , Oryza/fisiología , Animales , Carboxilesterasa/metabolismo , Genes de Insecto , Hemípteros/genética , Interferencia de ARN , TranscriptomaRESUMEN
BACKGROUND: The brown planthopper (Nilaparvata lugens, BPH) is the most destructive serious pest in rice production. Resistant varieties are effective means to defend against BPH, but the impact of the ingestion of resistant rice on BPH transcriptional regulation is still unclear. Here, we explore the molecular basis of the regulation by BPH feeding on resistant rice. RESULTS: BPH nymphs preferentially selected susceptible rice TN1 at 24 h after release in a choice test. Feeding on resistant rice IR56 under nonselective conditions increased mortality, decreased growth rate, and prolonged the molting time of BPH. Transcriptomic sequencing revealed 38 dysregulated genes, including 31 down-regulated and seven up-regulated genes in BPH feeding on resistant rice for 7 days compared with feeding on susceptible rice TN1. These genes were mainly involved in the pathways of growth and development, metabolism, energy synthesis, and transport. Finally, we showed that the toxicities of rice defensive compounds to BPH were dose-dependent, and silencing of the BPH gene dehydrogenase/reductase SDR family member 11 (NlDHRS11) increased sensibility to the rice secondary compounds ferulic acid and resorcinol. CONCLUSION: The adaption of BPH feeding on resistant rice is orchestrated by dynamically regulating gene expressions, and NlDHRS11 is a gene involved in the detoxification of plant defensive chemicals. The current work provides new insights into the interaction between insects and plants, and will help to develop novel BPH control strategies. © 2023 Society of Chemical Industry.
Asunto(s)
Hemípteros , Oryza , Animales , Oryza/química , Regulación de la Expresión Génica , Genes de Plantas , Hemípteros/fisiologíaRESUMEN
Single-phase (00 l)-oriented Bi2Te3 topological insulator thin films have been deposited on (111)-oriented ferroelectric 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) single-crystal substrates. Taking advantage of the nonvolatile polarization charges induced by the polarization direction switching of PMN-PT substrates at room temperature, the carrier density, Fermi level, magnetoconductance, conductance channel, phase coherence length, and quantum corrections to the conductance can be in situ modulated in a reversible and nonvolatile manner. Specifically, upon the polarization switching from the positively poled Pr+ state (i.e., polarization direction points to the film) to the negatively poled Pr- (i.e., polarization direction points to the bottom electrode) state, both the electron carrier density and the Fermi wave vector decrease significantly, reflecting a shift of the Fermi level toward the Dirac point. The polarization switching from Pr+ to Pr- also results in significant increase of the conductance channel α from -0.15 to -0.3 and a decrease of the phase coherence length from 200 to 80 nm at T = 2 K as well as a reduction of the electron-electron interaction. All these results demonstrate that electric-voltage control of physical properties using PMN-PT as both substrates and gating materials provides a simple and a straightforward approach to realize reversible and nonvolatile tuning of electronic properties of topological thin films and may be further extended to study carrier density-related quantum transport properties of other quantum matter.
RESUMEN
BACKGROUND: Noninvasive monitoring of intra-abdominal pressure (IAP) by measuring abdominal wall tension (AWT) was effective and feasible in previous postmortem and animal studies. This study aimed to investigate the feasibility of the AWT method for noninvasively monitoring IAP in the intensive care unit (ICU). METHODS: In this prospective study, we observed patients with detained urethral catheters in the ICU of Shanghai Tenth People's Hospital between April 2011 and March 2013. The correlation between AWT and urinary bladder pressure (UBP) was analyzed by linear regression analysis. The effects of respiratory and body position on AWT were evaluated using the paired samples t test, whereas the effects of gender and body mass index (BMI) on baseline AWT (IAP<12 mmHg) were assessed using one-way analysis of variance. RESULTS: A total of 51 patients were studied. A significant linear correlation was observed between AWT and UBP (R=0.986, P<0.01); the regression equation was Y=-1.369+9.57X (P<0.01). There were significant differences among the different respiratory phases and body positions (P<0.01). However, gender and BMI had no significant effects on baseline AWT (P=0.457 and 0.313, respectively). CONCLUSIONS: There was a significant linear correlation between AWT and UBP and respiratory phase, whereas body position had significant effects on AWT but gender and BMI did not. Therefore, AWT could serve as a simple, rapid, accurate, and important method to monitor IAP in critically ill patients.