Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833708

RESUMEN

Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.


Asunto(s)
Proteína Morfogenética Ósea 2 , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Regulación de la Expresión Génica , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2213080119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36223395

RESUMEN

Neurons in visual cortical areas primary visual cortex (V1) and V4 are adaptive processors, influenced by perceptual task. This is reflected in their ability to segment the visual scene into task-relevant and task-irrelevant stimulus components and by changing their tuning to task-relevant stimulus properties according to the current top-down instruction. Differences between the information represented in each area were seen. While V1 represented detailed stimulus characteristics, V4 filtered the input from V1 to carry the binary information required for the two-alternative judgement task. Neurons in V1 were activated at locations where the behaviorally relevant stimulus was placed well outside the grating-mapped receptive field. By systematically following the development of the task-dependent signals over the course of perceptual learning, we found that neuronal selectivity for task-relevant information was initially seen in V4 and, over a period of weeks, subsequently in V1. Once the learned information was represented in V1, on any given trial, task-relevant information appeared initially in V1 responses, followed by a 12-ms delay in V4. We propose that the shifting representation of learned information constitutes a mechanism for systems consolidation of memory.


Asunto(s)
Corteza Visual , Aprendizaje/fisiología , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Percepción Visual/fisiología
3.
Environ Sci Technol ; 58(12): 5512-5523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478581

RESUMEN

The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.


Asunto(s)
Monitoreo del Ambiente , Ostreidae , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Humanos , Bromofeniramina/análisis , China , Clorfeniramina/análisis , Antagonistas de los Receptores Histamínicos/análisis , Océanos y Mares , Ostreidae/química , Preparaciones Farmacéuticas/análisis , Prometazina/análisis , Contaminantes Químicos del Agua/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-38881170

RESUMEN

PURPOSE: Uncorrected refractive error is the leading cause of vision impairment globally; however, little attention has been given to equity and access to services. This study aimed to identify and prioritise: (1) strategies to address inequity of access to refractive error services and (2) population groups to target with these strategies in five sub-regions within the Western Pacific. METHODS: We invited eye care professionals to complete a two-round online prioritisation process. In round 1, panellists nominated population groups least able to access refractive error services, and strategies to improve access. Responses were summarised and presented in round 2, where panellists ranked the groups (by extent of difficulty and size) and strategies (in terms of reach, acceptability, sustainability, feasibility and equity). Groups and strategies were scored according to their rank within each sub-region. RESULTS: Seventy five people from 17 countries completed both rounds (55% women). Regional differences were evident. Indigenous peoples were a priority group for improving access in Australasia and Southeast Asia, while East Asia identified refugees and Oceania identified rural/remote people. Across the five sub-regions, reducing out-of-pocket costs was a commonly prioritised strategy for refraction and spectacles. Australasia prioritised improving cultural safety, East Asia prioritised strengthening school eye health programmes and Oceania and Southeast Asia prioritised outreach to rural areas. CONCLUSION: These results provide policy-makers, researchers and funders with a starting point for context-specific actions to improve access to refractive error services, particularly among underserved population groups who may be left behind in existing private sector-dominated models of care.

5.
J Environ Manage ; 360: 121153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772234

RESUMEN

Strategic coordination between urbanization and carbon emission efficiency (CEE) is vital for promoting low-carbon urbanization and sustainable urban planning. In order to assess the coupled coordination degree (CCD) of urbanization and CEE and investigate the factors influencing the CCD, this research employs the Super slacks-based measure (SBM) model, the coupled coordination degree model (CCDM), and the Tobit model. Four key findings emerge from the analysis of the temporal and spatial evolution traits of the CCD based on data from 106 nations worldwide between 2005 and 2020. (1) The global CEE shows a significant downward trend, and the spatial disparity is unambiguous. high CEE countries hang in the north and west of Europe, while those in Asia, Africa and the east of Europe have lower CEE. (2) The combined urbanization level and demographic, economic and social urbanization are all on an upward trend. Singapore has the greatest degree of urbanization overall globally. (3) The CCD of urbanization and CEE shows a fluctuating upward trend, with particularly strong changes in 2018-2020. 2017 and 2018 are the years with better global coupling coordination status. During the study period, the CCD results of countries are mostly uncoordinated and low coordination, and the CCD of the United States, China, India and Japan is in the front. (4) The effect of urban electrification rate on the CCD is positive; the effect of foreign trade and net inflow of foreign direct investment is negative; while energy structure and industrial structure have no significant effect. A number of policy proposals are put forth in light of the outcomes of the research to enhance the coordination.


Asunto(s)
Carbono , Urbanización
6.
Diabetologia ; 66(6): 1142-1155, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36917279

RESUMEN

AIMS/HYPOTHESIS: Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-ß is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-ß levels to human glucose metabolism and the mechanism by which TGF-ß enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-ß-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-ß1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-ß1 in glucose metabolism. METHODS: Serum levels of TGF-ß1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-ß1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-ß1 receptor, in mediating the effect of TGF-ß1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation. RESULTS: We observed higher levels of serum TGF-ß1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA1c and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-ß1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-ß1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis. CONCLUSIONS/INTERPRETATION: The hepatic TGF-ß1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-ß1 and/or preventing hyperactivation of TGF-ß1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Animales , Ratones , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Hepatocitos/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Gluconeogénesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
7.
Exp Eye Res ; 234: 109616, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580002

RESUMEN

The etiology of myopia remains unclear. This study investigated whether retinal ganglion cells (RGCs) in the myopic retina encode visual information differently from the normal retina and to determine the role of Connexin (Cx) 36 in this process. Generalized linear models (GLMs), which can capture stimulus-dependent changes in real neurons with spike timing precision and reliability, were used to predict RGCs responses to focused and defocused images in the retinas of wild-type (normal) and Lens-Induced Myopia (LIM) mice. As the predominant subunit of gap junctions in the mouse retina and a plausible modulator in myopia development, Cx36 knockout (KO) mice were used as a control for an intact retinal circuit. The kinetics of excitatory postsynaptic currents (EPSCs) of a single αRGC could reflect projection of both focused and defocused images in the retinas of normal and LIM, but not in the Cx36 knockout mice. Poisson GLMs revealed that RGC encoding of visual stimuli in the LIM retina was similar to that of the normal retina. In the LIM retinas, the linear-Gaussian GLM model with offset was a better fit for predicting the spike count under a focused image than the defocused image. Akaike information criterion (AIC) indicated that nonparametric GLM (np-GLM) model predicted focused/defocused images better in both LIM and normal retinas. However, the spike counts in 33% of αRGCs in LIM retinas were better fitted by exponential GLM (exp-GLM) under defocus, compared to only 13% αRGCs in normal retinas. The differences in encoding performance between LIM and normal retinas indicated the possible amendment and plasticity of the retinal circuit in myopic retinas. The absence of a similar response between Cx36 KO mice and normal/LIM mice might suggest that Cx36, which is associated with myopia development, plays a role in encoding focused and defocused images.


Asunto(s)
Miopía , Células Ganglionares de la Retina , Animales , Ratones , Células Ganglionares de la Retina/fisiología , Reproducibilidad de los Resultados , Retina , Miopía/etiología , Ratones Noqueados
8.
Pediatr Blood Cancer ; 69(12): e29985, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36114651

RESUMEN

BACKGROUND: The SARS-CoV-2 outbreak in 2020 evolved into a global pandemic, and COVID-19 vaccines became rapidly available, including for pediatric patients. However, questions emerged that challenged vaccine acceptance and use. We aimed to answer these questions and give recommendations applicable for use in pediatric patients with cancer by healthcare professionals and the public. METHODS: A 12-member global COVID-19 Vaccine in Pediatric Oncology Working Group made up of physicians and nurses from all world regions met weekly from March to July 2021. We used a modified Delphi method to select the top questions. The Working Group, in four-member subgroups, answered assigned questions by providing brief recommendations, followed by a discussion of the rationale for each answer. All Working Group members voted on each recommendation using a scale of 1 to 10, 10 being complete agreement. A "pass" recommendation corresponded to an agreement ≥7.5. RESULTS: We selected 15 questions from 173 suggested questions. Based on existing published information, we generated answers for each question as recommendations. The overall average agreement for the 24 recommendations was 9.5 (95% CI 9.4-9.6). CONCLUSION: Top COVID-19 vaccine-related questions could be answered using available information. Reports on COVID-19 vaccination and related topics have been published at record speed, aided by available technology and the priority imposed by the pandemic; however, all efforts were made to incorporate emerging information throughout our project. Recommendations will be periodically updated on a dedicated website.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Niño , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Vacunación , Neoplasias/terapia
9.
Nutr Res Rev ; 35(1): 112-135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33988113

RESUMEN

Circadian rhythms, metabolic processes and dietary intake are inextricably linked. Timing of food intake is a modifiable temporal cue for the circadian system and may be influenced by numerous factors, including individual chronotype - an indicator of an individual's circadian rhythm in relation to the light-dark cycle. This scoping review examines temporal patterns of eating across chronotypes and assesses tools that have been used to collect data on temporal patterns of eating and chronotype. A systematic search identified thirty-six studies in which aspects of temporal patterns of eating, including meal timings; meal skipping; energy distribution across the day; meal frequency; time interval between meals, or meals and wake/sleep times; midpoint of food/energy intake; meal regularity; and duration of eating window, were presented in relation to chronotype. Findings indicate that, compared with morning chronotypes, evening chronotypes tend to skip meals more frequently, have later mealtimes, and distribute greater energy intake towards later times of the day. More studies should explore the difference in meal regularity and duration of eating window amongst chronotypes. Currently, tools used in collecting data on chronotype and temporal patterns of eating are varied, limiting the direct comparison of findings between studies. Development of a standardised assessment tool will allow future studies to confidently compare findings to inform the development and assessment of guidelines that provide recommendations on temporal patterns of eating for optimal health.


Asunto(s)
Conducta Alimentaria , Comidas , Adulto , Ritmo Circadiano , Ingestión de Energía , Humanos , Sueño
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362154

RESUMEN

Diabetic retinopathy (DR) was identified as a leading cause of blindness and vision impairment in 2020. In addition to vasculopathy, DR has been found to involve retinal neurons, including amacrine cells and retinal ganglion cells. Despite possessing features that are susceptible to diabetic conditions, photoreceptor cells have received relatively little attention with respect to the development of DR. Until recently, studies have suggested that photoreceptors secret proinflammatory molecules and produce reactive oxygen species that contribute to the development of DR. However, the effect of hyperglycemia on photoreceptors and its underlying mechanism remains elusive. In this study, the direct effect of high glucose on photoreceptor cells was investigated using a 661w photoreceptor-like cell line. A data-independent sequential window acquisition of all theoretical mass spectra (SWATH)-based proteomic approach was employed to study changes induced by high glucose in the proteomic profile of the cells. The results indicated that high glucose induced a significant increase in apoptosis and ROS levels in the 661w cells, with mitochondrial dysfunction among the major affected canonical pathways. The involvement of mitochondrial dysfunction was further supported by increased mitochondrial fission and reduced mitochondrial bioenergetics. Collectively, these findings provide a biological basis for a possible role of photoreceptors in the pathogenesis of DR.


Asunto(s)
Retinopatía Diabética , Hiperglucemia , Humanos , Proteómica , Hiperglucemia/metabolismo , Células Fotorreceptoras/metabolismo , Retinopatía Diabética/metabolismo , Mitocondrias/metabolismo , Glucosa/farmacología , Glucosa/metabolismo
11.
Glob Chang Biol ; 27(15): 3463-3473, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33934458

RESUMEN

Diatoms and dinoflagellates are two major bloom-forming phytoplankton groups in coastal ecosystems and their dominances will notably affect the marine ecosystems. By analyzing an 18-year monthly monitoring dataset (2000-2017) in the Pearl River Estuary (one of the most highly urbanized and populated estuarine in the world), we observe an increasing trend of the diatom to dinoflagellate ratio (Diatom/Dino). As revealed by multiple statistical models (generalized additive mixed model, random forest, and gradient boosting algorithms), both groups are positively correlated with temperature. Diatoms are positively correlated with nitrate and negatively correlated with ammonium while dinoflagellates show an opposite pattern. The Diatom/Dino trend is explained by an altered nutrient composition caused by a decadal increase in anthropogenic input, at which nitrate increased rapidly while ammonium and phosphate were relatively constant. Regarding the interaction of warming and nutrient dynamics, we observe an additive effect of warming and nitrate enrichment that promotes the increase in diatom cell density, while the dinoflagellate cell density only increases with warming when nutrients are depleted. Our models predict that the Diatom/Dino ratio will further increase with increasing anthropogenic input and global warming in subtropical estuarine ecosystems with nitrate as the dominant inorganic nitrogen; its ecological consequences are worthy of further investigation.


Asunto(s)
Diatomeas , Dinoflagelados , Ecosistema , Eutrofización , Fitoplancton
12.
Proc Natl Acad Sci U S A ; 115(41): 10499-10504, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254154

RESUMEN

Early sensory cortex is better known for representing sensory inputs but less for the effect of its responses on behavior. Here we explore the behavioral correlates of neuronal responses in primary visual cortex (V1) in a task to detect a uniquely oriented bar-the orientation singleton-in a background of uniformly oriented bars. This singleton is salient or inconspicuous when the orientation contrast between the singleton and background bars is sufficiently large or small, respectively. Using implanted microelectrodes, we measured V1 activities while monkeys were trained to quickly saccade to the singleton. A neuron's responses to the singleton within its receptive field had an early and a late component, both increased with the orientation contrast. The early component started from the outset of neuronal responses; it remained unchanged before and after training on the singleton detection. The late component started ∼40 ms after the early one; it emerged and evolved with practicing the detection task. Training increased the behavioral accuracy and speed of singleton detection and increased the amount of information in the late response component about a singleton's presence or absence. Furthermore, for a given singleton, faster detection performance was associated with higher V1 responses; training increased this behavioral-neural correlate in the early V1 responses but decreased it in the late V1 responses. Therefore, V1's early responses are directly linked with behavior and represent the bottom-up saliency signals. Learning strengthens this link, likely serving as the basis for making the detection task more reflexive and less top-down driven.


Asunto(s)
Atención/fisiología , Aprendizaje/fisiología , Orientación/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Macaca mulatta , Masculino , Modelos Neurológicos , Estimulación Luminosa
13.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201217

RESUMEN

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.

14.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639194

RESUMEN

Humulus lupulus Linn. is a traditional medicinal and edible plant with several biological properties. The aims of this work were: (1) to evaluate the in vitro antifungal activity of H. lupulus ethanolic extract; (2) to study the in vitro and in vivo antifungal activity of isoxanthohumol, an isoprene flavonoid from H. lupulus, against Botrytis cinerea; and (3) to explore the antifungal mechanism of isoxanthohumol on B. cinerea. The present data revealed that the ethanolic extract of H. lupulus exhibited moderate antifungal activity against the five tested phytopathogenic fungi in vitro, and isoxanthohumol showed highly significant antifungal activity against B. cinerea, with an EC50 value of 4.32 µg/mL. Meanwhile, it exhibited moderate to excellent protective and curative efficacies in vivo. The results of morphologic observation, RNA-seq, and physiological indicators revealed that the antifungal mechanism of isoxanthohumol is mainly related to metabolism; it affected the carbohydrate metabolic process, destroyed the tricarboxylic acid (TCA) cycle, and hindered the generation of ATP by inhibiting respiration. Further studies indicated that isoxanthohumol caused membrane lipid peroxidation, thus accelerating the death of B. cinerea. This study demonstrates that isoxanthohumol can be used as a potential botanical fungicide for the management of phytopathogenic fungi.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Humulus/química , Peroxidación de Lípido/efectos de los fármacos , Xantonas/farmacología , Botrytis/crecimiento & desarrollo
15.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445748

RESUMEN

In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Degeneración Macular/etiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Catepsina D/metabolismo , Células Cultivadas , Humanos , Hidroquinonas , Leupeptinas , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/citología
16.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946922

RESUMEN

Most of the previous myopic animal studies employed a single-candidate approach and lower resolution proteomics approaches that were difficult to detect minor changes, and generated limited systems-wide biological information. Hence, a complete picture of molecular events in the retina involving myopic development is lacking. Here, to investigate comprehensive retinal protein alternations and underlying molecular events in the early myopic stage, we performed a data-independent Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) based proteomic analysis coupled with different bioinformatics tools in pigmented guinea pigs after 4-day lens-induced myopia (LIM). Myopic eyes compared to untreated contralateral control eyes caused significant changes in refractive error and choroid thickness (p < 0.05, n = 5). Relative elongation of axial length and the vitreous chamber depth were also observed. Using pooled samples from all individuals (n = 10) to build a species-specific retinal ion library for SWATH analysis, 3202 non-redundant proteins (with 24,616 peptides) were identified at 1% global FDR. For quantitative analysis, the 10 individual retinal samples (5 pairs) were analyzed using a high resolution Triple-TOF 6600 mass spectrometry (MS) with technical replicates. In total, 37 up-regulated and 21 down-regulated proteins were found significantly changed after LIM treatment (log2 ratio (T/C) > 0.26 or < -0.26; p ≤ 0.05). Data are accepted via ProteomeXchange with identifier PXD025003. Through Ingenuity Pathways Analysis (IPA), "lipid metabolism" was found as the top function associated with the differentially expressed proteins. Based on the protein abundance and peptide sequences, expression patterns of two regulated proteins (SLC6A6 and PTGES2) identified in this pathway were further successfully validated with high confidence (p < 0.05) using a novel Multiple Reaction Monitoring (MRM) assay on a QTRAP 6500+ MS. In summary, through an integrated discovery and targeted proteomic approach, this study serves as the first report to detect and confirm novel retinal protein changes and significant biological functions in the early LIM mammalian guinea pigs. The study provides new workflow and insights for further research to myopia control.


Asunto(s)
Proteínas del Ojo/biosíntesis , Miopía/metabolismo , Proteómica/métodos , Retina/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Biología Computacional , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Cobayas , Metabolismo de los Lípidos , Redes y Vías Metabólicas/genética , Programas Informáticos
17.
Carcinogenesis ; 41(5): 689-698, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400758

RESUMEN

Hepatocellular carcinoma (HCC) is reported to associate with abnormal expression of SCF E3 ubiquitin ligases. FBXW10, an F-box protein of the E3 ubiquitin ligases, was abnormally regulated in HCC patients. However, whether FBXW10 is associated with HCC has not yet been evaluated. Here, we analyzed the associations between overall survival and various risk factors in 191 HCC tissues. Univariate and multivariate analyses demonstrated that FBXW10 was an independent risk factor related to HCC prognosis. The results showed that FBXW10, gender and tumor state were strongly associated with overall survival in HCC patients. Furthermore, high expression of FBXW10 was associated with poor survival among male HCC patients but not female HCC patients. FBXW10 was more highly expressed in male HCC tissues and more strongly related to vascular invasion in male HCC patients. Consistent with these findings, the male FBXW10-Tg(+) mice were more susceptible to tumorigenesis, changes in regenerative capacity, and liver injury and inflammation but not changes in liver function than FBXW10-Tg(-) mice. FBXW10 promoted cell proliferation and migration in HCC cell lines. Our findings reveal that FBXW10, an independent risk factor for HCC, promotes hepatocarcinogenesis in male patients, and is also a potential prognostic marker in male patients with HCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Proteínas F-Box/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas F-Box/genética , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Rheumatology (Oxford) ; 59(10): 3070-3080, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417913

RESUMEN

OBJECTIVES: IL-37 has been identified as an important anti-inflammatory and immunosuppressive factor. This study was undertaken to explore how IL-37 affects M1/M2-like macrophage polarization and thus contributes to anti-inflammatory processes in the temporomandibular joint. METHODS: Western blotting, quantitative real-time PCR (qRT-PCR) and immunofluorescence were used to verify the IL-37-induced polarization shift from the M1 phenotype to the M2 phenotype, and the related key pathways were analysed by western blotting. Human chondrocytes were stimulated with M1-conditioned medium (CM) or IL-37-pretreated M1-CM, and inflammatory cytokines were detected. siRNA-IL-1R8 and MCC-950 were used to investigate the mechanism underlying the anti-inflammatory effects of IL-37. Complete Freund's adjuvant-induced and disc perforation-induced inflammation models were used for in vivo studies. Haematoxylin and eosin, immunohistochemical and safranin-O staining protocols were used to analyse histological changes in the synovium and condyle. RESULTS: Western blotting, qRT-PCR and immunofluorescence showed that IL-37 inhibited M1 marker expression and upregulated M2 marker expression. Western blotting and qRT-PCR showed that pretreatment with IL-37 suppressed inflammatory cytokine expression in chondrocytes. IL-37 inhibited the expression of NLRP3 and upregulated the expression of IL-1R8. Si-IL-1R8 and MCC-950 further confirmed that the anti-inflammatory properties of IL-37 were dependent on the presence of IL-1R8 and NLRP3. In vivo, IL-37 reduced synovial M1 marker expression and cartilage degeneration and increased M2 marker expression. CONCLUSION: IL-37 shifting of the polarization of macrophages from the pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype seems to be a promising therapeutic strategy for treating temporomandibular joint inflammation.


Asunto(s)
Polaridad Celular/efectos de los fármacos , Interleucina-1/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trastornos de la Articulación Temporomandibular/terapia , Western Blotting , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Adyuvante de Freund , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Indenos , Inflamasomas/efectos de los fármacos , Macrófagos/metabolismo , Cóndilo Mandibular/patología , Osteoartritis/inducido químicamente , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , ARN Interferente Pequeño/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-1/metabolismo , Sulfonamidas , Sulfonas/farmacología , Membrana Sinovial/patología , Trastornos de la Articulación Temporomandibular/inducido químicamente , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Regulación hacia Arriba
19.
Proc Natl Acad Sci U S A ; 114(32): 8637-8642, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739915

RESUMEN

Perceptual grouping of line segments into object contours has been thought to be mediated, in part, by long-range horizontal connectivity intrinsic to the primary visual cortex (V1), with a contribution by top-down feedback projections. To dissect the contributions of intraareal and interareal connections during contour integration, we applied conditional Granger causality analysis to assess directional influences among neural signals simultaneously recorded from visual cortical areas V1 and V4 of monkeys performing a contour detection task. Our results showed that discounting the influences from V4 markedly reduced V1 lateral interactions, indicating dependence on feedback signals of the effective connectivity within V1. On the other hand, the feedback influences were reciprocally dependent on V1 lateral interactions because the modulation strengths from V4 to V1 were greatly reduced after discounting the influences from other V1 neurons. Our findings suggest that feedback and lateral connections closely interact to mediate image grouping and segmentation.

20.
Pestic Biochem Physiol ; 170: 104705, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32980068

RESUMEN

Magnolia officinalis, as a well-known herb worldwide, has been widely used to treat multiple diseases for a long time. In this study, the petroleum ether extract from M. officinalis showed effective antifungal activity against seven plant pathogens (particularly against R. solani with an inhibition rate of 100.00% at 250 µg/mL). Honokiol and magnolol, isolated by the bioassay-guided method, exhibited greater antifungal activity than tebuconazole (EC50 = 3.07 µg/mL, p ≤ 0.001) against R. solani, which EC50 values were 2.18 µg/mL and 3.48 µg/mL, respectively. We used transcriptomics to explore the mechanism of action of honokiol against R. solani. Results indicated that honokiol may exert antifungal effects by blocking the oxidative phosphorylation metabolic pathway. Further studies indicated that honokiol induced ROS overproduction, disrupted the mitochondrial function, affected respiration, and blocked the TCA cycle, which eventually inhibited ATP production. Besides, honokiol also damaged cell membranes and caused morphological changes. This study demonstrated that the lignans isolated from M. officinalis possess the potential to be developed as botanical fungicides.


Asunto(s)
Lignanos/farmacología , Magnolia , Antifúngicos/farmacología , Bioensayo , Compuestos de Bifenilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA