Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquat Toxicol ; 269: 106879, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422927

RESUMEN

How the particle size and concentration of microplastics impact their toxicity is largely unknown. Herein, the effects of polystyrene microplastics (1 µm, MPs) and nanoplastics (100 nm, NPs) exposed at 1 mg/L (L) and 10 mg/L (H), respectively, on the growth, histopathology, oxidative stress, gut microbiome, and metabolism of rare minnow (Gobiocypris rarus) were investigated by chemical analysis and multi-omics. MPs and NPs inhibited the growth, induced histopathological injury and aggravated oxidative stress markedly with contrasting significance of particle size and concentration. The composition of core gut microbiota changed dramatically especially for the MPs-H. Similarly, gut bacterial communities were reshaped by the MPs and NPs but only NPs-H decreased both richness and Shannon indexes significantly. Co-occurrence network analysis revealed that the potential keystone genera underwent great changes in exposed groups compared to the control. MPs-H increased the network complexity and the frequency of positive interactions which was opposite to other exposed groups. Moreover, the metabolomic profiles associated with amino acid, lipid, unsaturated fatty acid and hormone metabolism were disturbed significantly especially for MPs-H and NPs-H. In conclusion, the toxicity of MPs depends on both the particle size and concentration, and varies with the specific indicators as well.


Asunto(s)
Cyprinidae , Cipriniformes , Contaminantes Químicos del Agua , Animales , Plásticos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Tamaño de la Partícula , Contaminantes Químicos del Agua/toxicidad
2.
Chemosphere ; 361: 142453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821127

RESUMEN

Gut bacteria of earthworm Amynthas hupeiensis exhibit significant potential for the in-situ remediation of cadmium (Cd)-contaminated soil. However, the mechanisms by which these gut bacteria immobilize and tolerate Cd remain elusive. The composition of the gut bacterial community was characterized by high-throughput sequencing. Cd-tolerant bacteria were isolated from the gut, and their roles in Cd immobilization, as well as their tolerance mechanisms, were explored through chemical characterization and transcriptome analysis. The predominant taxa in the gut bacterial community included unclassified Enterobacteriaceae, Citrobacter, and Bacillus, which were distinctly different from those in the surrounding soil. Notably, the most Cd-tolerant gut bacterium, Citrobacter freundii DS strain, immobilized 63.61% of Cd2+ within 96 h through extracellular biosorption and intracellular bioaccumulation of biosynthetic CdS nanoparticles, and modulation of solution pH and NH4+ concentration. Moreover, the characteristic signals of CdS were also observed in the gut content of A. hupeiensis when the sterilized Cd-contaminated soil was inoculated with C. freundii. The primary pathways involved in the response of C. freundii to Cd stress included the regulation of ABC transporters, bacterial chemotaxis, cell motility, oxidative phosphorylation, and two-component system. In conclusion, C. freundii facilitates Cd immobilization both in vitro and in vivo, thereby enhancing the host earthworm's adaptation to Cd-contaminated soil.


Asunto(s)
Cadmio , Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Oligoquetos/metabolismo , Oligoquetos/microbiología , Animales , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Compuestos de Cadmio/metabolismo , Nanopartículas/química , Bacterias/metabolismo , Microbiología del Suelo , Sulfuros/metabolismo , Citrobacter freundii/metabolismo
3.
Huan Jing Ke Xue ; 45(6): 3533-3542, 2024 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-38897773

RESUMEN

The form of soil nitrogen input significantly affects soil CO2 emission. As a new form of nitrogen input, biochar-loaded ammonia nitrogen not only reduces the input of chemical nitrogen fertilizer in farmland but also reduces the cost of environmental treatment. It is of great significance to promote the zero growth of national chemical fertilizer, the prevention and control of farmland non-point source pollution, and the realization of the national goal of "carbon peak" and "carbon neutralization." Through an indoor culture experiment, the effects of different nitrogen input forms on soil carbon emission, enzyme activity, and microbial community were studied through four treatments:no fertilization (CK), single application of chemical nitrogen fertilizer (CF), biochar combined application of chemical nitrogen fertilizer (BF), and biochar-loaded ammonia nitrogen (BN). The results showed that compared with that in CF, BF significantly increased cumulative carbon emissions (66.24 %), whereas BN had no significant difference. It is worth noting that the cumulative carbon emissions were significantly reduced by 35.28 % compared with that in BF and BN. Compared with those in CF and BF, the activities of ß-glucosidase, peroxidase, and polyphenol oxidase treated with BN significantly increased by 20.25 % and 5.20 %, respectively. Compared with that in CF, the BF treatment increased microbial community richness and community diversity, whereas the BN treatment decreased microbial community richness. Compared with that in BF, the relative abundance of Proteobacteria decreased by 11.16 %, and the relative abundance of Actinobacteria and Bacteroidota increased by 8.12 % and 5.83 %, respectively, in which xylosidase activity was the most important soil factor affecting microbial community structure. The relative abundance of Chloroflexi was significantly correlated with cellobiose hydrolase activity, and the relative abundance of Gemmatimonadetes was significantly correlated with ß-glucosidase activity. There was a very significant correlation between the relative abundance of Proteobacteria and cumulative carbon emissions. To summarize, compared with those under biochar combined with chemical nitrogen fertilizer, biochar loaded with ammonia nitrogen significantly reduced cumulative carbon emissions, and its emission reduction effect was better. The results of this study will be beneficial to the landing of the national "double carbon strategy," the healthy development of the biological natural gas industry, the construction of the national green cultivation circular agriculture system, and the realization of the national zero growth strategy of chemical fertilizer.


Asunto(s)
Amoníaco , Carbono , Carbón Orgánico , Fertilizantes , Nitrógeno , Microbiología del Suelo , Suelo , Carbón Orgánico/química , Suelo/química , Microbiota/efectos de los fármacos , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Dióxido de Carbono/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA